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Abstract. Nonadiabatic ion heating in low-Mach number shocks is only partially
due to reflected ions. Directly transmitted ions contribute significantly into the
downstream ion temperature and can be responsible for the whole heating even in
the absence of reflected ions, due to insufficient and inhomogeneous deceleration
in the cross-shock potential. As a result, the average ion velocity at the downstream
edge of the shock ramp is significantly greater than the velocity required by the
Rankine-Hugoniot relations, and the ion distribution gyrates as a whole. Because
of the nonlinear dependence of the deceleration on the cross-shock potential and
initial ion velocity, the gyrating ion distribution is also much more dispersed than
the upstream distribution. Additional dispersion is caused by the increase of the
vector potential across the shock ramp. The heating depends not only on the bulk

shock parameters, as Mach number and (3, but also on the field profile. The ion
distribution which leaves the ramp is gyrophase-bunched. Further downstream,
strong spatially periodic heating occurs, because the initially gyrophase bunched
ions become periodically gyrophase dispersed due to nonlinear dependence of the

ion gyrophase on its coordinate and velocity.

1. Introduction

It is well-known that ions are strongly heated in super-
critical shocks due to reflected ions which are transmitted
downstream with high gyration velocities and form strong
gyrophase-bunched components in the ion distribution [?].
The fraction of the reflected ions can be as large as ~ 30% in
the high-Mach number shocks with A ~ 10. Ion heating in
low-Mach number shocks is substantially weaker but usually
exceeds the adiabatic expectations where 7 o B [?]. Ion
dynamics at the shock front is always strongly nonadiabatic
since the shock width ~ ¢/wp; < V., /€2, [?]. Here V;, is the
upstream plasma velocity, €2, = eB, /m; is the upstream
ion gyrofrequency, wy; is the ion plasma frequency, and ¢
is the light velocity. Observations [??] have shown that the
main ion heating occurs in the shock ramp vicinity (the most
narrow part of the shock stationary structure, where the main
magnetic field jump occurs), while additional ion distribu-
tion broadening and smoothing are observed farther down-
stream [?]. The primary heating occurs during the shock
ramp crossing, that is, at the typical timescale of < 0.1 of
ion gyroperiod. At the same time the physically meaning-

ful scattering times due to the interaction with the turbulent
fields in the shock front constitute several ion gyroperiods
[?]. Therefore we may ignore the turbulent effects in the
shock ramp vicinity and relate the heating to the operation of
the quasi-stationary electric and magnetic fields of the shock
transition layer. ? showed that in the shock ramp vicinity
the shock structure is quasi-stationary (at least at the ramp
crossing timescale) and one-dimensional (the field variation
scale in the direction perpendicular to the shock normal is
at least an order of magnitude larger than along the shock
normal). Since during the shock ramp crossing an ion walks
to the distance < vr /€, along the shock front (v is the
incident ion thermal velocity) and v /V,, < 1, we may also
neglect the small deviation of one dimensionality. Thus the
prompt main ion heating should occur during the shock ramp
crossing because of the interaction with the stationary one-
dimensional field structure of the shock ramp.

This idea has been successfully exploited for high-Mach
number supercritical shocks where the model of the specu-
lar reflection has been applied to estimate the downstream
ion temperature at least by an order of magnitude [?????7?].
It was confirmed also by direct hybrid simulations [???]
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which showed that the main contribution to the downstream
ion temperature in supercritical shocks comes from the ions
which are reflected and transmitted downstream at their sec-
ond encounter with the shock ramp. These ions form a very
strong gyrophase-bunched (but rather diffuse and not cold)
component in the ion distribution in the downstream region.
Observations [??], simulations [?], and analytical models [?]
show that due to these reflected ions the strong ion heating
begins not at the shock ramp but at the upstream edge of the
foot, where these ions first appear.

Ion heating in the low-Mach number (subcritical, margi-
nally critical, and supercritical) shocks looks different [??].
The heating starts at the shock ramp and not in the foot (the
latter does not exist at all in subcritical shocks). The temper-
ature increase is more modest. There are few [?] or almost
no [?] gyrophase-bunched ions in the downstream distrib-
ution. Observations are contradictory in some sense, since
? found that even a small reflected ion fraction of ~ 3%
contributes up to ~ 40% to the total heating, while ? found
earlier that the contribution of reflected ions both in the num-
ber density and temperature is negligible. In both cases the
parameters of the observed shocks (Mach number M ~ 2,
angle @ ~ 80°, and 3. ~ f3; ~ 0.1) were alike, which caused
? to suggest that the parameter space which determines the
shock structure and ion dynamics may be wider than is usu-
ally assumed. In all cases it was found that the contribution
of the directly transmitted (that is, non reflected) ions in the
eventual temperature was significant (decisive in the case of
?).

? made an attempt to explain the contribution of transmit-
ted ions assuming that they are not deflected when crossing
the shock transition layer (which is the ramp for low-Mach
number shocks). In the de Hoffman-Teller frame the incident
ion velocity is directed along the upstream magnetic field.
Since the magnetic field rotates when the shock is crossed,
the downstream ion will have a significant gyration veloc-
ity component. Heating itself is due to different character
of trajectories of different ions. Later hybrid simulations by
? have shown that the number of reflected ions and their
contribution are negligible in the low-Mach number case but
drastically increase when the Mach number exceeds the crit-
ical Mach number. Still these hybrid simulations did not
confirm directly the assumption of ion non deflection. ? per-
formed similar hybrid simulations to study the dependence
of the reflected ion contribution on the temperature tensor.
He also criticized the above assumption and argued in favor
of what he has called “kinetic effects”. Still the mechanism
of the transmitted ion heating remained obscured and the in-
fluence of the field structure has not been analyzed.

The objective of the present paper is to study the mech-
anism of the transmitted ion heating and to assess to what
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extent these transmitted ions can contribute to the total heat-
ing of the downstream ions. The consideration is based on
the idea that the heating is mainly due to the nonadiabatic
ion motion in the quasi-stationary electromagnetic fields of
the shock transition layer. We analyze how the field structure
translates into the downstream ion temperature. The consid-
eration is carried out in the perpendicular geometry for sim-
plicity and more transparency. There are arguments [??] in
favor of applicability of the results for nearly perpendicular
shocks as well (see conclusions).

The paper is organized as follows. In section 2 we con-
sider analytically the ion dynamics in the shock front and
derive general relations, including ion heating, for low-beta,
low-Mach number shocks. In section 3 we illustrate the re-
sults of section 2 by direct numerical analysis of ion trajecto-
ries in a model shock front. Although the obvious disadvan-
tage of such a test particle analysis is that is does not describe
the shock structure self-consistently, it has the following ad-
vantages over hybrid simulations: (1) the shock parameters
can be freely varied over a wide range, (2) once the field
structure is established, the ion motion is governed by the
stationary fields, and (3) there are no irreversible processes
that can obscure reversible effects.

2. Ion Dynamics in the Shock Front
and Downstream Distribution:
Analytical Approach

Ion heating in a shock front is mainly a result of the ion
dynamics in the spatially varying but time-stationary elec-
tric and magnetic fields [????]. Although turbulent effects
cannot be excluded completely, the level of turbulence is too
low to produce the observed heating in such a small crossing
time as ~ 0.1 of ion gyroperiod [cf. ?]. We shall therefore
consider a time-stationary one-dimensional shock structure
[cf. ?]. Three dimensionality of real shocks that should be
taken into account at larger scales [?] (when ion acceleration
and/or injection is studied) is unimportant here because the
process under consideration is much faster than the cross-
field diffusion and develops at much smaller spatial scales.

In the present paper we restrict ourselves to the strictly
perpendicular geometry, where we can ignore one degree
of freedom. Generalization onto quasi-perpendicular case
is discussed in the end of the paper. The shock normal is
along z axis, and the magnetic field is along z axis. Since
the z motion is decoupled and unaffected by the shock, we
restrict ourselves with a two-dimensional problem. In the
low-Mach number shocks, there is no or almost no foot, the
noncoplanar magnetic field and potential cross-shock elec-
tric field are concentrated within the ramp, and the overshoot
is low [??]. We therefore neglect the overshoot and foot
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and assume that all field variations occur within the finite
shock ramp —D < x < D with the length L = 2D. The
fields in the shock are B = [0, 0, B,(z)], with B, = B, at
¢ < =D, E = [E.(x), Ey, 0], where E, = V,, B, = const
and £, < 0.

Notation

As we shall see below the problem is essentially dimen-
sionless, so it is natural to express all quantities in the corre-
sponding dimensionless variables as follows:

v Quz
V—u%u, Qut — t, . —, (D
where we retained the same notation for dimensional and
corresponding dimensionless variables for convenience. The
normalized magnetic field b, electric field e, and potential ¢
are defined as follows:

B, E, ep
B 0 B, TC mvEp @
where E, = —dp/dxz takes the following dimensionless

form e = —(1/2)(d¢/dz).

In what follows we use the dimensionless upstream ion
thermal velocity vp = (T,/mi)"/?/V, = /Bi/2M?,
where 3; = SFRUTU/BZ and M is the Alfven Mach num-
ber. We normalize the temperature with the upstream tem-
perature 7'/T,, — T (assuming Maxwellian distribution for
the incident ions) and the pressure with the incident ion ram
pressure p;; /nym; V2 — pij.

In the new dimensionless variables the ion equations of
motion take the following simple form

T = Uy, 3
Y= Uy - “4)

Uy = €+ uyb,

Uy = 1 — ugb,

We shall denote also v = u at the upstream edge of the
ramp * = —D and w = u at the downstream edge of the
ramp x = D.

Collisionless Distribution and Moments

Since ions are assumed to be collisionless, the distribu-
tion function f(uy, uy, £) = fo(uzo, uyo, o), where
(uz0, uyo, o) are the initial conditions for the ion trajectory
(ugz, uy, x)(t) found as a solution of (2?)—(??). In what fol-
lows we put 2y = —D, so that (ugzn, uyo) = (ve, vy). Then

f(ux,uy,x):fo[vx(ux,uy,x),vy(ux,uy,x)]. &)
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Averaging of any function g(u,u,) over the distribution
f(ug, uy) can be carried out as follows

= Z/g(ux,uy)Jfo(vx,vy)dvxdvy ©)

_ Z/g(ux,uy)|vx|/|ux|f0(vx,vy)dvxdvy,

where J = det ||0u;/0v;|| is the Jacobian of the transfor-
mation v.— u at x = const and the last equality follows
from the general relation J = |v,|/|uz| which is valid in
the one-dimensional stationary case. In (??), now u, and u,
are functions of (v, vy, ) and summation over s takes into
account the possibility that there is more than one solution.

The moments of the distribution are found now as follows

pij = {wu;) — nV;Vj, ®)
Ti; = pij/n, )

where n, V;, p;;, and T;; are density, velocity, pressure ten-
sor, and temperature tensor, respectively.

When the distribution is warm (not hot) everywhere, that
is, vp < V, we Taylorexpandu = u.+duand v = v +4v
near the trajectory of the central ion u = u.(ve, #) . Then
simple but somewhat tedious algebra gives

n = |vxc|/|uxc|a Vi:uica (10)
Ou; | Ouy

Ty| = 29| 24 73, R 11

]| avl||avm| im,0; Dij nigy ( )

where summation over repeated indices is understood and
the derivatives are taken at u = u..

Shock Ramp Crossing

Let us consider first the shock ramp crossing, assuming
that the distribution function f(vs, vy) of the incident ions
at the upstream edge of the shock ramp x = — D) is known.
We assume that the ions do not return to the ramp and cross it
again from downstream to upstream. This assumption is ap-
plied to the whole distribution for low-Mach number shocks

tribution in high-Mach number shocks [???]. Taking into
account that the directly transmitted ions do not stop inside
the shock ramp, that is, u, > 0 in the region —D < x < D,
one can substitute d/dt = u, d/dxz, and (??)-(??) take the



GEDALIN: ION HEATING

following form:
ui:vi—q/)—l—?/ uybdz, (12)
-D
uy:vy—i—/ (1/uy — b)dx, (13)
-D

where it is assumed that ¢(z = —D) = 0.

The ion velocities (wy,wy) at the downstream edge of
the shock ramp are (formally) obtained from (??) and (??)
by putting the upper integration level at x = ). Equations
(?2)-(??) are not integrable and cannot be solved in general
case. We solve them in the low-£ limit vp < 1, assuming
that the terms containing integration can be treated as small.
Then in the first order one has

D
=t [ U-o T dd a9
-D

wx:vi—qf)o
D T
2 bd 1—¢)" Y2 —p]d
+ [D x[DM 5) Jd,

where ¢ = ¢(x = D). Equation (??) gives the condition
of the applicability of the perturbative approach as

5)

vp < (1= ¢o)H2,

|/ bdm/ -2

For the low-beta Maxwellian distribution of the incident
ions (centered on v, = 1, vy, = 0), (22)-(2?) with (22)—(2?)
and (??)—(??) give for the variables at the downstream edge

6
bdE| < (1 — ¢o)'/?. (e

of the shock ramp (superscript r)

D
n<’“>:{1—¢+2/ bdx

-D
de[(1—¢)71/7 — g1V, a7
-D
Vi =1/nt, (18)
D
v :/ dz[(1—¢)~1/2 — 1), (19)
-D
D
70 = -4 [ e
-D
i D
/ de(1—¢)721** + (/ bdx)*}, (20)
-D -D
D
Ty =1+ %[/ de(1 - 6)=3/%)?, 1)
-D
D i
70 = {1 - %/ bdm/ dé(1 — ¢) =3/
-D -D
D D
30wt - oy, 2)
-D -D
and the pressure tensor pE;) = n(’“)TZg ") One can see that

although the incident ion temperature is diagonal, there is
a nonzero off-diagonal 77, at the downstream edge of the
shock ramp.

As can be seen from (??) to (??) the heating at the ramp
depends on the profiles of the magnetic and electric field and
not only on the upstream and downstream values. This de-
pendence is weak when the shock is not thick. In the limit of
the thin shock 2 — 0 one immediately finds that the heating
depends only on the cross-shock potential:

n = 1V = (1= ), VD =0, (23)
T = (1=9), Ty =1, T4 = (1-9¢)"7 24)

One can expect that in the low-Mach number shocks, where
the shock width ~ D ~ 1/M [?], the heating at the ramp is
close to that described by (??)—(??), with relative corrections
< D.

~

Proceeding Further Downstream

In the downstream region, //y, = 0 and B = By = RB,,
where & = const, so that the corresponding equations of
motion reduce to

T = g, (25)
Y= Uy, (26)

where we introduced A = 1/R. It is convenient to use the
ion velocities (w, wy) at the downstream edge of the shock

Uy = Ruy,
Uy = R\ — ug),
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ramp x = D as new initial conditions. Then the correspond-
ing solution of (??)—(??) reads

Uy = A+ (wy — A) cosp + wy sin @, 27
Uy = —(wy — A)sin ) + wy cos Y, (28)
R = X + (we — A)sinyp + wy cos ¥, (29)

where v = Rt is the ion gyrophase.

In principle (but unfortunately not in practice), (??)—(??)
allow us to exclude u,. and u, and find ¢ as a function of ini-
tial velocities and . We shall therefore define (multi valued)
gyration function ¥, (wy, wy, ) and rewrite the averaging
(??) as follows

|w, |

<g(uxauy)>d = Z/fr(wxawy)dwxdwymga (30)
s Uz

where subscripts d and r denote downstream and down-
stream edge of the shock ramp, respectively, and the sum-
mation is over all solutions (u ., uy) for given (wg, wy, ).
In the same approximation of the warm ion distribution
as above one finds the following parametric representation

n=1/u; = [A (wy — A)cos ¢ + wysiny] ™, (31)
T = {[Acos ) 4 (w, — NPT

+ (wy + w, sin ) *T17) (32)

+ 2[Acos p + (wy — A)](wy + we sin 1/))Tx(2)}/ui,

d) __ 2 .2 r
T;y) = [A2sin? yT")

+ (wg cos Y + wy sin 1/))2T35;) (33)
— 2Asin ¢ (wg cos ¥ + wy sin 1/))Tx(2)]/ui,
T = (( = Asiny[Acos v + (wy — N7

oy
+ (wy + we sin ) (wy cos ¥ + wy sin 1/))T35;) (34)
+ {[Acos ) + (wy — A)](we cos ¥ + wy sin )

— Asin ¢ (wy + wg sin 1/))}Tx(2)))/ui’

where u; and x are given by (??) and (??), while w =
(we, wy) is the initial velocity of the central ion. The pres-
sure components, as above, are related to the temperature
tensor as p;; = ni;;. One can immediately see that the
temperature tensor (as well as density and velocity) is spa-
tially periodic with the period 27\ 2. The last conclusion is
valid for arbitrary initial distribution f, (w, wy) of the ions
at the downstream edge of the shock ramp and not only in
the warm case. If for each ion, (wy — A)? 4+ w] < A?
(that is, u, > 0 always), the periodicity starts at the very
edge of the ramp. Ions, trajectories of which are looped
(we — A)* 4w, > A?, break this periodicity near the ramp,
and it starts at some distance farther into downstream.

5

In the same thin shock approximation as above one has
Wy = \/1_¢’ Wy = 0’ Tx(‘g) = 1/(1 - ¢)’ Tx(‘z) =
1/vVT=, T\ = 1, and since A = 1/R = B, /By, the
resulting heating is function of ¢ and R only. Analysis of
(?7—(??) shows that T' = (T + Tyy)/2 reaches its maxi-
mum approximately at cos ¢ = —1, thatis, where n and T},
are maximum. The maximum temperature at this point is

() & R*(1 - ¢)
™ 92— R(L- 9) 7
and depends on the cross-shock potential and magnetic com-
pression ratio. However, the above warm ion approximation
works at cos ¢ = —1, if the corresponding thermal velocity

does not exceed V; min = 2A — /1 — ¢, which gives inde-
pendent estimate of the upper limit

() 2M7 (22X — /1= ¢)? (36)
max 62 .

The correct estimate is then the smallest from (??) and (??).

(35)

Summarizing the above consideration, the ion distribu-
tion at the downstream edge of the shock ramp is determined
by the nonadiabatic ion motion in the stationary electric and
magnetic fields of the ramp. The cross-shock potential is not
sufficient to decelerate ions down to the velocity required
by the Rankine-Hugoniot relations, which results in the gy-
ration as a whole of the downstream ion distribution. As a
result, all hydrodynamical variables become spatially peri-
odic (oscillate with ) downstream of the ramp, in the near
vicinity of it, where turbulent effects do not isotropize the
distribution yet. Nonlinear dependence of the ion deceler-
ation and magnetic deflection on the initial ion velocity re-
sults in the increase of the velocity dispersion in the ion dis-
tribution at the downstream edge of the ramp and therefore
nonadiabatic heating. This heating depends on the profiles
of the electric and magnetic field (in particular, shock width)
and not only on the upstream and downstream values. Fur-
ther downstream the effective heating is due to the gyration
of the ion distribution and resulting spatially periodic broad-
ening of ion distribution, because of the nonlinear depen-
dence of the ion gyrophase on its position and velocity. The
maximum possible temperature is determined mainly by the
excess of gyration energy of ions, which in turn depends
mainly on ¢ and R. Therefore downstream outside of the
ramp ion heating should be much less sensitive to the field
profile than at the ramp itself. It should be emphasized that
in all cases the heating is due to insufficient deceleration of
ions at the shock ramp.

3. Numerical Analysis

As we have seen earlier, complete analytical considera-
tion is possible only for low-beta cases. Mathematical diffi-



