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ABSTRACT
We propose a pulsar radio emission mechanism that involves a plasma instability not previ-
ously considered in the context of pulsars: a nonresonant, beam-driven, hydrodynamical insta-
bility in a one-dimensional, highly relativistic, streaming, pair plasma. The growing waves are
in a beam mode at frequencies below the frequency of the (known) analogous resonant insta-
bility. The instability is analyzed in detail for a cold plasma and a col beam, and the inclusion
of a random relativistic spread in momenta does not change the conclusions substantially. The
net amplification due to the nonresonant instability is much larger than for the resonant insta-
bility due to its broad-band nature implying growth over a much greater distance, as the ratio
of the wave frequency to the resonant frequency decreases through the inhomogeneous pulsar
magnetosphere. When this ratio reaches unity the beam mode joins onto the L-O mode, and
the waves subsequently freely escape from the magnetosphere. Like other beam instabilities,
effective growth requires a sufficiently dense beam of not too high energy particles.
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1 INTRODUCTION

Pulsars were discovered in 1967, and since then their highly non-
thermal (brightness temperatures up to 1029 K) pulsed radio emis-
sion (Manchester and Taylor 1977) remains one of the most intrigu-
ing puzzles of astrophysics. In the standard model for the electro-
dynamics of pulsars, the superstrong magnetic field (polar field of
1012 G) combined with the fast rotation (periods P ∼ 10−2 − 100

s) results in a very highly relativistic, γ ∼ 106 − 107, beam of
‘primary’ particles, and a denser, less relativistic pair plasma pro-
duced in an electromagnetic avalanche near the poles (see, e.g.,
Arons 1983, and references therein). The primary beam, with den-
sity, np, of the order of the Goldreich-Julian value nGJ (required to
maintain corotation), results from acceleration by an electric field
parallel to the magnetic field in an ‘inner gap’ near the magnetic
poles. The avalanche produces a secondary pair plasma with a so-
called multiplicity factor M = np/nGJ � 1, variously estimated
to be within the range M ∼ 102 − 106 (Manchester and Tay-
lor 1977; Melrose 1995; Shibata et al. 1998); recent studies (Hi-
bschman and Arons 2001) suggest that a lower value of M may
be realistic. The pair plasma is thought to have a flow Lorentz
factor of the same order as the spread in random Lorentz factors
γp ∼ 〈γ〉 ∼ 10 − 103. The superstrong magnetic field causes
the particles to radiate away their perpendicular momenta rapidly
so that the distribution function becomes one-dimensional in the
momentum space. It is assumed that the observed radio emission
arises in this ‘pulsar plasma’. However, substantial uncertainties in
our estimations of the plasma parameters remain (Zhang and Hard-
ing 2000; Zhang et al 2000; Hibschman and Arons 2001).

The mechanism of the pulsar radio emission is not adequately

understood. A favored scenario involves the excitation of normal
modes of the pair plasma in the polar-cap region by an instability,
with the growing waves either themselves escaping from the pul-
sar magnetosphere (‘direct’ mechanisms) or being partially con-
verted into waves that can escape (‘indirect’ mechanisms) (see,
e.g., Melrose 1993, 1995, and references therein). Models differ in
the assumed properties of the natural modes, the properties of the
beam, the nature of the beam instability, the spatial location of the
growth region, and the relation between the growing and the escap-
ing waves. The favored radio source region, assumed here, is rela-
tively close to an ‘inner gap’ near the pulsar surface (Cordes 1992),
whereas the source region for high energy emission is thought to
be in an ‘outer gap’ near the light cylinder. (There is evidence that
some radio features correlate with the high energy emission, sug-
gesting that there might also be radio emission from the outer gap,
but we do not consider this here.) The favored type of instability
involves a beam of higher energy particles propagating through a
lower energy (but still highly relativistic) pair plasma. One type of
beam is intrinsic to all models: the ‘primary’ particles with very
high Lorentz factors and density n ≈ nGJ stream through the sec-
ondary pair plasma. However, the primary beam is inadequate in
exciting the waves (Magneville 1990; Asseo and Riazuelo 2000)
because of the high Lorentz factor and the low density. A denser
and less relativistic beam is needed for the instability to develop ef-
fectively. Such a beam may result from nonstationary plasma pro-
duction (Usov 1987; Asseo and Melikidze 1998). Alternatively, a
dense beam can be formed from the tail of the pair plasma distribu-
tion even if the pair production itself is stationary, and it has been
argued that such a beam can be efficient in producing Langmuir
waves (Lyubarskii and Petrova 2000).
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Modes in a relativistic one-dimensional pair plasma have been
studied extensively (see, e.g., Asseo and Riazuelo 2000, and refer-
ences therein). In the approximation of the infinite magnetic field,
B →∞ for a wide class of distributions the natural modes include
the purely electromagnetic t-mode ω = kc, and two mixed modes
with transverse and longitudinal components (Gedalin et al 1998;
Melrose and Gedalin 1999): the almost nondispersive subluminal
Alfvén mode ω = k‖vA, where the subscripts ‖ and ⊥ refer to the
direction with respect to the external magnetic field and the Alfvén
speed vA is very close to the light speed, and the generally superlu-
minal (ω/k‖ > 1) L-O mode. The L-O mode has a longwavelength
cutoff ω(k = 0) 6= 0 and a frequency that may be defined as the
relativistic plasma frequency (ωp/〈γ〉1/2 in the notation used be-
low). An important point is that the L-O mode is subluminal for
very small angles of propagation above a characteristic frequency,
∼ ωp〈γ〉1/2, of order 〈γ〉 times the relativistic plasma frequency.
The necessary ingredients for the radio emission mechanism were
established by Melrose and Gedalin (1999): (a) only t-wave and
the waves which appear on the L-O branch can eventually escape
the pulsar magnetosphere as radio emission; (b) of all modes men-
tioned above only the L-O mode can be produced due to a beam
instability; (c) the beam instability is of a hydrodynamical (reac-
tive) type where all particles contribute to the wave excitation, in
contrast with the kinetic instabilities where only a group or reso-
nant particles participates in the wave excitation (Machabeli 1991;
Lyutikov 1998).

The hydrodynamical instability has two limiting cases, re-
ferred to as resonant and nonresonant, depending on whether the
frequency shift, k‖vb, associated with the beam is nearly equal or
significantly different from the frequency of the growing waves.
Previously, only the resonant beam instability has been considered,
usually only for parallel propagating waves (Magneville 1990;
Lyubarskii 1996; Lyutikov 1998; Asseo and Riazuelo 2000). The
parallel resonant instability is inadequate for direct production of
the radio emission for at least three reasons. First, it produces
waves in a narrow high frequency region,∼ ωp〈γ〉1/2 Melrose and
Gedalin (1999), so that subsequent conversion to lower frequen-
cies would be necessary to account for the observations (Lyubarskii
1996). Second, the L-O mode for parallel propagation is purely
longitudinal and an additional physical effect needs to be invoked
for these longitudinal waves to result in escaping transverse waves.
Third, the growth factor is limited due to the change in the char-
acteristic frequency with height causing the waves to get out of
resonance as they propagate, and it is difficult to explain how ad-
equate growth can occur. The most efficient way to generate radio
emission would be, however, direct excitation of electromagnetic
waves in the required frequency range, so that the basic spectrum
forms in the excitation region.

In the present paper we generalize and develop an idea, pro-
posed in Gedalin et al (2002), that the nonresonant hydrodynamical
beam instability can overcome the foregoing difficulties: it can ac-
count for generation of transverse waves that can escape directly.
The growth occurs in a ‘beam mode’ with a frequency less than
the characteristic frequency, ωp〈γ〉1/2, and the dispersion curve
for this beam mode connects to the L-O mode at the characteris-
tic frequency. As ωp decreases along the ray path, the beam mode
continues to grow until its frequency is equal to the characteristic
frequency, and which point it becomes an L-O mode and escapes
directly.

The paper is organized as follows. In section 2 we discuss the
parameters of the region where radio waves are supposed to be gen-
erated. In section 3 we consider in detail the oblique beam instabil-

ity in a cold plasma, including the issues of the relation between the
beam and L-O modes and inhomogeneity. We show that qualitative
features of the instability are not sensitive to the details of the distri-
bution function. In section 4 we present the mechanism of the radio
spectrum formation. We derive the local field line spectrum within
a simple approximate model, taking into account the propagation
along the curved field lines. The proposed mechanism allows to
place constraints on possible parameters of the pair plasma.

2 BACKGROUND

The size, geometry, and other features of the instability region are
of primary importance for any model of radio emission generation.
In this section we outline the pulsar model adopted here.

2.1 The polar cap model

For simplicity we assume a perpendicular rotator, with the mag-
netic axis along the x-axis, and the rotation axis along the z-
axis. The light cylinder radius is RL = cP/2π, where P is
the pulsar period. We do not distinguish between the rotating
and nonrotating frames, cf. Muslimov & Tsygan (1992); Petrova
& Lyubarskii (2000); Gedalin and Melrose (2001). Assuming
dipole geometry of the magnetic field, the field lines are given by
sinφ/r1/2 = const, where x = r cosφ and y = r sinφ. The an-
gle between the magnetic field and the magnetic axis is tanψ =
3 sinφ cosφ/(3 cos2 φ − 1). The last open field line has φ = 90◦

at r = RL, so that the equation for this line is sinφ = (r/RL)1/2.
The polar cap zone is defined as the region of open fields lines,
and it is limited by the last open field line. The angular size of the
polar cap at the pulsar surface is sinφp = (RP /RL)1/2, where
RP ∼ 10 km is the radius of the star. In the polar cap model, the
radio waves are assumed to be generated in the region of open mag-
netic field lines, at some height r = RE , which is usually assumed
to satisfy RP � RE � RL. Then the maximum angular width of
the emission region is sinφE = (RE/RL)1/2. WithRE/RL � 1,
one has φE = (RE/RL)1/2 � 1, and the maximum opening an-
gle of the field line is ψE ≈ 3φE/2. For millisecond pulsars, for
whichRL/Rp ∼ 10, and also for emission from an outer gap in or-
dinary pulsars, the small angle approximation is not accurate. Our
results need modification for millisecond pulsars and for emission
from an outer gap, but we do not consider such modifications here.

The inhomogeneity scale of the emission region along the field
lines is L‖ ∼ RE , and the inhomogeneity scale in the perpen-
dicular scale is L⊥ . REφE and may be substantially smaller
depending on the details of the pair production. The radio waves
may be treated as plane waves with frequency ω and wavevector
k = (k⊥, k‖) (⊥ and ‖ refer to the local magnetic field direc-
tion) provided that the geometrical optics conditions, k‖L‖ � 1
and k⊥L⊥ � 1, are satisfied. The conditions k‖L‖ � 1 is al-
ways well satisfied. Because of relativistic beaming only waves
with θ = arctan(k⊥/k‖) � 1 are of interest. The transverse
condition limits the propagation angle θ from below: θ � θc ∼
1/kL⊥ & 1/kREφE . For transverse waves with a nearly vacuum
dispersion this gives θc & c/ωREφE . Technically, this implies that
strictly parallel propagation is invalidated by the plasma inhomo-
geneity. Whether, in practice, waves with θ > θc can be considered
as nearly parallel depends on whether the wave dispersion changes
significantly over the range θ . θc.

Most models of pair plasma production suggest that the sec-
ondary, denser pair plasma is generated by a cascade from the pri-
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mary beam at a pair production front. The primary particles are
accelerated through a potential drop up to the energies correspond-
ing to the Lorentz-factor γi, whose value is uncertain (Daugherty
and Harding 1982), and which is assumed to be a free parameter
here. Beyond the pair production front a plasma with the density
np ∼ MNGJ is produced. The multiplicity factor M is unknown
and theoretical estimates vary in the range M ∼ 1 − 104 (Hi-
bschman and Arons 2001). Energy conservation roughly requires
γp . γi/M , although this depends on the efficiency of the pair
production (a part of the primary beam energy is lost to radiation).

2.2 The beam that drives the instability

Beyond the pair production front, the primary particles form a low-
density high-energy primary beam propagating through the sec-
ondary plasma. However, the primary beam is ineffective in causing
radio waves to grow (see, e.g., discussion in Melrose and Gedalin
(1999) and references therein). The theory of wave growth requires
a denser, less energetic beam. Two suggestion are that this arises
due to nonstationarity in the pair production cascade (Usov 1987)
or resonant inverse Compton scattering (Lyubarskii and Petrova
2000). Here we simply postulate that a beam with the required
properties is present. We assume a beam density nb and typical
Lorentz-factor γb, which are free parameters of the theory.

3 BEAM INSTABILITY REVISITED

In this section we discuss the instability caused by a cold relativistic
beam penetrating cold relativistic plasma, emphasizing the nonres-
onant instability that has been previously overlooked.

3.1 Hydrodynamical versus maser theories

An important point that leads to a major simplification is that the in-
stability should be hydrodynamical (or reactive) rather than kinetic
(or resistive). Beam instabilities have hydrodynamical (or reactive)
rather than kinetic forms, with the hydrodynamical form applying
when the growth rate exceeds the bandwidth of the growing waves
due to the Doppler spread, and with the kinetic form applying when
this inequality is reversed. The Doppler spread is k‖∆v where ∆v
is the velocity spread. For a highly relativistic beam, γb � 1, the
Doppler spread is intrinsically very small because most of the par-
ticles are concentrated in a very small velocity range, ∆v ∼ c/γ2

b ,
just below c. Thus a kinetic instability, with ω ≈ k‖c, can have a
growth rate no larger than∼ ω/γ2

b , and this is too small to account
for effective growth before the waves leave the growth region. Any
effective instability must be hydrodynamic.

In a hydrodynamic instability effectively all the particles in the
beam interact with the wave in the same way, so that their momen-
tum spread is essentially irrelevant to the instability. This allows
one to treat the instability by ignoring the velocity spread entirely,
that is, assuming a ‘cold’ beam.

Another simplification that we make here is to assume that the
wave frequency, ω, is much less than the cyclotron frequency of
all relevant particles. The zeroth order term in the ratio of the cy-
clotron to the wave frequency corresponds to the limit of infinite
field, B = ∞. This limit suffices for identifying the details of the
instability, with inclusion of a finite-B leading only to small cor-
rections provided that this ratio is small.

3.2 The cold, B = ∞ limit

Let the plasma density and Lorentz-factor be np and γp, with the
corresponding quantities for the beam being nb and γb. The disper-
sion relation for the L-O mode in the limit B = ∞ may be written
in the form

tan2 θ

z2 − 1
= ε‖, (1)

where z = ω/k‖, θ is the propagation angle with respect to the
magnetic field direction, and hereafter c ≡ 1 for convenience.
For our purposes it is more convenient to write the parallel dielec-
tric constant in the form ε‖ = 1 − (ω2

p/k
2
‖)W (z), with ω2

p =

4πn0e
2/m, where n0 is the sum of the number densities of elec-

trons and positrons. The relativistic plasma dispersion function,
W (z), involves a sum over contributions, s = ±1, of electrons
and positrons, each with one-dimensional distribution function fs.
One has

W (z) =
X

s

αs

Z
dfs

v − z
, (2)

with αs = ns/n0, v = (1 − 1/γ2)1/2. We consider only forward
propagating modes, k‖ > 0, and then W (z) is well-defined for
Im z > 0. One has to analytically continue W (z) into the half-
plane Im z < 0. With this notation, the dispersion relation (1) be-
comes

k2
‖

ω2
p

=
W (z2 − 1)

z2 − z2
0

, (3)

with z0 = 1/ cos θ.
The cold plasma-beam system is given by fs = δ(v − vs).

Then one has

W (z) =
1

γ3
p(z − vp)2

+
α

γ3
b (z − vb)2

, (4)

with α = nb/np. It is convenient to write z = vb + η. The large
ratio (γb/γp)3 makes the contribution of the beam negligible pro-
vided |η| � vb. Then (4) gives

W (z) = 4γp +
α

γ3
b η

2
. (5)

Substituting z = vb + η and expanding in small quantities, includ-
ing θ � 1, one finds 

k2
‖

ω2
r

!»
1− θ2γ2

b

2γ2
b η − 1

–
= 1 +

α

4γpγ3
b η

2
, (6)

where, in the absence of the beam, the frequency ωr = 2ωpγ
1/2
p

separates the region ω � ωr where the L-O mode is highly super-
luminal and nearly longitudinal from the region ω � ωr where it
is nearly transverse with vacuum-like dispersion. For small propa-
gation angles, θγb � 1, the dependence on the angle is negligible
for |2γ2

b η − 1| � 1.

3.3 The growth rate

The dispersion equation (6) is a cubic equation for η = z− vb, and
instability occurs when two of the solutions are a complex con-
jugate pair. The growth rate is then given by Γ = k‖vb Im z =
ω Im η.

The nonresonant growth rate applies at low frequencies, k‖ �
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Figure 1. Growth rate vs frequency for the cold-cold case and different an-
gles of propagation. The instability range squeezes as the propagation angle
increases: higher growth rates and larger regions of instability correspond
to smaller propagation angles.

ωr , when the left hand side of (6) can be neglected. The solution of
the resulting quadratic equation gives

Γn

ω
=

„
nb

np

«1/2
1

2γ
1/2
p γ

3/2
b

, (7)

where the approximation k‖/ωr � 1 is used.
The instability becomes resonant for k‖ = ωr , and the growth

rate is then

Γr

ωr
=

√
3

2
√

2

„
nb

np

«1/3
1

2γpγb
. (8)

The general solution of (6) reduces to (7) and to (8) in the respective
limits. For higher frequencies the three solutions are real, implying
no growth for ω > ωr .

The ratio of the nonresonant to the resonant growth rate,

Γn/ω

Γr/ωr
≈
„
nb

np

«1/6„
γp

γb

«1/2

, (9)

is not especially small unless nb/np and γp/γb are very small.
These results apply for sufficiently small θ, and for larger θ the
term ∝ θ2 in (6) tends to reduce the instability range, in the sense
that the maximum frequency at which growth is possible decreases
as a function of increasing θ.

Figure 1 shows the dependence of the growth rate on fre-
quency for various angles of propagation. Units are not shown since
the parameters are chosen for convenience of presentation and do
not correspond to real pulsar plasma parameters. It is seen that the
instability range squeezes as the propagation angle increases. The
maximum growth rate occurs near the resonance ω = ωr .

3.4 The amplification factor for a cold beam

In a homogeneous plasma the fastest growing instability should
dominate, and it is for this reason that the resonant instability has
been assumed to dominate in pulsar plasma. However, the situation
is different in the pulsar plasma which is flowing outwards, so that
the density drops as n ∝ R−3. We now argue that in this more
realistic case it is the nonresonant instability that dominates.

Let the resonance width be ∆ωr , that is, the wave is in the
resonance if |ω − ωr| < ∆ωr . This width can be estimated
from the resonance condition |ω − k‖vb| < Γr and the disper-
sion for the wave, ω = k‖vp + ωp/γ

3/2
p . One has ∆ωr/ωr ∼

(nb/np)1/3(γp/γb)
1/2 ∼ (Γn/Γr)

2. The energy going into grow-
ing waves is proportional to the product of the growth rate and
the bandwidth of the growing waves. The bandwidth of growing
waves is the resonance width and the bandwidth for the nonres-
onant instability is much broader, of order the frequency itself.
Hence the ratio of the bandwidths is of order ∆ωr/ωr , and the
ratio of the energy going into resonant and nonresonant waves is
∼ Γr∆ωr/Γnωr ∼ Γn/Γr . It follows that the effect of the band-
width of the growing waves dominates over the growth rate, and
that for Γn/Γr � 1, contrary to intuition, the nonresonant waves
dominate over the resonant waves.

The amplification factor for the waves is given by integrating
the growth rate along the ray path. The foregoing argument implies
that the amplification factor for nonresonant growth exceeds that
due to resonant growth due to the much longer path over which
the waves grow. This effect may be estimated by assuming that the
resonant frequency varies with radius, as ωr ∝ ∆ωr ∝ R−3/2,
and integrating along the ray path. Suppose that the wave is in
the resonance at R = R0. For resonant growth it would re-
main in the resonance only over a distance |R − R0| given by
|R − R0|/R0 ∼ ∆ωr/ωr � 1. Assuming linear growth, such
that the wave amplitude grows according to (da/dt) = Γa, the
growth in wave energy over a path R1 < R < R2 is determined
by the amplification factor

G(ω, θ) = 2

Z R2

R1

Γ(R,ω, θ)dR/c. (10)

The contribution of the resonance is typically small, and is at most
comparable with that of the nonresonant part. The energy going
into resonant waves certainly does not dominate that going into
nonresonant waves.

3.5 The escaping radiation

Beyond the resonant frequency the instability ceases and the L-O
waves are in the transparency range. Figure 2 shows the behavior of
the normal modes in the transparency region. The left panel shows
the range −γ2

p < z − 1 < θ2. The right panel magnifies the range
−γ2

b < z − 1 < θ2 which cannot be resolved in the left panel,
since 1/γ2

b � 1/γ2
p . The superluminal mode with z > 1 + θ2/2

(θ � 1) is the L-O mode. It corresponds to ω = kc in the high
frequency limit, ω/ωr � 1. Four other modes have ω = k‖vp or
z− 1 = 1/2γ2

p (two) and ω = k‖vb or z− 1 = 1/2γ2
b (other two)

asymptotically (that is, for k‖ → ∞), and stand in the plasma and
beam frame, respectively. We note that the “beam mode” z = vb is
electromagnetic: the polarization is determined by relation as

Ex/Ez = tan θ/(1− z2),→ E⊥/E‖ ≈ θ/(1/2γ2
b + θ2). (11)

The last ratio is large for 1/γ2
b � θ.

The instability occurs in the range 1 − 1/2γ2
p < z < 1 −

1/2γ2
b , where there is a gap between the dispersion curve and the z

axis. The instability ceases in the lowest point of this curve, where
two complex conjugate solutions of the dispersion relation become
a double real solution. The unstable mode should proceed further
along one of this bifurcating branches.

3.6 Effect of a relativistic spread in momenta

To justify our neglect of the spread in velocity or momentum in the
beam, we now include a spread and show that it does not affect our
conclusions significantly.
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Figure 2. The transparency range for the cold-cold case (magnified in the
right panel). See explanation in text.

As an example of a hot plasma distribution we consider the
double waterbag distribution of the following form (here y = z−1,
see notation in Appendix): f = npApH(y1 − y)H((y − y2) +
nbAbH(y3 − y)H(y − y4), where H(y) is the step function,
H(y > 0) = 1, H(y < 0) = 0, the ordering of the parame-
ters yi = 1/2γ2

i is y1 > y2 > y3 > y4, and the normalizing
parameters Ap and Ab are obtained from the normalization condi-
tion as follows: Ap = 1/

√
2y2 − 1/

√
2y1 (Ab respectively). The

function W (z) is

W (z) =
ω2

pAp(y1 − y2)

(x+ y1)(x+ y2)
+

ω2
bAb(y3 − y4)

(x+ y3)(x+ y4)
. (12)

Figure 3 shows K(x) in the transparency range. The parame-
ters used are α = 0.1, θ = 0.1◦, γ1 = 10, γ2 = 50, γ3 = 500,
and γ4 = 1000.

The corresponding growth rate is shown in Figure 4 as a func-
tion of the propagation angle. As anticipated, the growth rate is
similar to what is found for the cold case.

The double-waterbag distribution is discontinuous at the
edges. It has been shown (Gedalin et al 1998)that the Alfvén and
beam mode are expected to damp for more realistic distributions
(although damping depends on the details of the distribution func-
tion behavior and may be weak). The only mode which is expected
to propagate freely beyond the resonance point, is the L-O mode.
To illustrate what happens in this case we consider the “double soft
bell” distribution

f = npAp(y−y1)2(y−y2)2H(y1−y)H(y−y2)+nbAb(y−y3)2(y−y4)2H(y3−y)H(y−y4).
(13)

The exact expressions for the normalization parameters Ap,b and
for W (z) are cumbersome and we do not quote them here. Fig-
ure 5 shows K =

p
(ReF ) ·H(F ) and ImF , with F = k2

‖/ω
2
p,

for the double soft distribution with γ1 = 5, γ2 = 60, γ3 = 50,
γ4 = 200, nb/np = 0.3, and θ = 0.5◦. The distribution func-
tion is shown in Figure 6. In this case the distribution and its
first derivative are continuous, and there are no gaps (γ3 < γ2).
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Figure 3. (Left) K as a function of x for the double waterbag case with
α = 0.1, θ = 0.1◦, γ1 = 10, γ2 = 50, γ3 = 500, and γ4 = 1000;
(Right) The instability region magnified.
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Figure 4. Left: growth rate vs frequency for the double waterbag distribu-
tion with γ1 = 10, γ2 = 50, γ3 = 500, and γ4 = 1000, and propagation
angles θ = 0.01◦, 0.05◦, 0.1◦, 0.2◦, and 0.5◦. Right: same for γ1 = 5,
γ2 = 20, γ3 = 200, and uγ = 500, and θ = 0.05◦, 0.1◦, 0.5◦, 1.0◦.
The instability range progressively diminishes towards larger propagation
angles as in Figure 1.
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Figure 5. Transparency region (see text).
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Figure 6. Overlapping double soft bell distribution.

It is seen that above a certain frequency only L-O mode with
z > 1/ cos θ can propagate, that is, the plasma is not transpar-
ent for other modes. Figure 7 shows the phase velocity and growth
rate of the unstable mode. The maximum growth rate occurs at the
frequency ω = Kωp < ωp

√
γ2, and below this maximum, the

growth rate Γ/ω = Im z is almost independent of ω. Thus, the ef-
fective resonance frequency ωr decreases relative to the frequency
predicted by the cold plasma-beam analysis. The instability ceases
at ω = ωc ≈ 2ωp

√
γ2, which also corresponds to the frequency

beyond which only the L-O mode can propagate.
In an inhomogeneous pulsar plasma the point ω = ωc would

correspond to the point of refractive conversion of the unstable
beam mode into L-O mode. Indeed, the propagating unstable mode
grows until ω ≈ ωr and then propagates almost without change up
to the critical radius where ω = ωc. This mode cannot propagate
any further. Since the polarizations of the unstable mode and L-O
mode are the same at this point, the unstable mode simply joins
onto L-O mode (see Appendix B). At the point of conjunction, ω
and k⊥ do not change. The unstable mode has ω ≈ k‖ while the L-

2.5 5 7.5 10 12.5 15 17.5
k

-y2

-y3

-y4

zr

2.5 5 7.5 10 12.5 15 17.5
k

y2

y4
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Figure 7. Phase velocity (left) and normalized growth rate (right) for double
soft bell distribution case.

O mode has ω = k. Thus, the propagation angle of the L-O mode
is related to the propagation angle of the unstable mode by the re-
lation θ′ = θ/

√
1− θ2 ≈ θ, where we assumed θ � 1. Thus, to

within our approximations, the propagation angle as the growing
mode joins onto the L-O mode.

3.7 Validity of the cold-plasma, cold-beam model

Finally, we show that the instability growth rate may be taken from
the cold-cold approximation even if the true distribution is far from
begin cold. Let us assume that the plasma and beam distributions
are well separated in velocity space (this is not necessary as we
have seen above, but simplifies the analysis). In other words, we
assume that the plasma body is contained within γ1 < γ < γ2 and
the beam is contained within γ3 < γ < γ4, with γ3 � γ2. This
does not necessarily mean that there are no particles in the regions
γ < γ1, γ2 < γ < γ3, and γ > γ4. However, we do assume
that number of these particles and their contribution are negligible.
We also assume that the distribution function is steep at the low-
and high-energy ends. These criteria are by no means rigorous and
should, in principle, be verified in each individual case. We do not
make any a priori assumption about the behavior of the distributions
inside the defined intervals. The behavior of the unstable mode is
determined by the functionW (z) when Im z > 0. As we have seen
from above, in the nonresonant instability regime z = vn + iσ,
where vn . v3, and 1/σ2

2 & σ & 1/γ2
3 . With this one finds

W (z) ≈ 〈γ〉p −
α〈γ−3〉b
σ2

, (14)

where 〈. . .〉 =
R
f(. . .)dγ. Comparing (14) with the expressions

for the cold case one can see that the only change which has to be
done is the substitution γp → 〈γ〉p, and γ−3

b → 〈γ−3〉b ∼ 1/γ3
3 .

With these substitutions the dispersion relation is reduced to that
of the cold case. To this one has to add that the only non-damping
waves are the superluminal L-O mode z − 1 > x0.
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From the above we conclude that the beam instability devel-
ops in a qualitatively similar manner irrespective of the distribution
functions of the relativistic pair plasma and of the beam. The ba-
sic features of the instability are: (a) the growth rate for slightly
oblique propagation does not differ much from the growth rate for
the parallel propagation; (b) unstable oblique waves are transverse,
whereas unstable parallel waves are longitudinal; (c) the nonreso-
nant instability dominates over resonant instability in the outflow-
ing pulsar plasma; (d) at the point where the instability ceases the
unstable mode joins onto L-O mode.

It is worth mentioning that for the distributions found in nu-
merical analyses (Daugherty and Harding 1982; Hibschman and
Arons 2001) (f ∝ γ−3/2 or f ∝ γ−2) the resonance frequency
depends only weakly on the maximum Lorentz factor of the plasma
(〈γ〉 ∝ γ

1/2
2 or 〈γ〉 ∝ ln γ2).

We suggest that the oblique nonresonant instability with the
immediate conversion of the unstable mode into the propagating
L-O wave provides the mechanism for local generation of radio
waves. In the following section we consider the implications of this
mechanism for the pulsar magnetosphere.

4 MECHANISM

The emission mechanism proposed here involves three stages: (a)
radio noise, from the background or from incoherent emission, is
amplified in the nonresonant, oblique-angle instability, with ampli-
fication occurring over a broad frequency range; (b) as the waves
propagate outward, the ratio, ω/ωr , of the wave frequency to
the characteristic frequency increases, and when this ratio reaches
unity the amplification ceases; (c) at the point where the ratio
reaches unity the waves, which grow in a beam mode, evolve into
L-O mode waves which then escape freely, at least until they reach
the region where the wave frequency is equal to the cyclotron fre-
quency of the ambient particles Luo and Melrose (2001). In this
section we discuss some further details of this proposed mecha-
nism.

4.1 Parallel and oblique propagation

It is usually assumed that waves propagating parallel to the mag-
netic field grow (see, e.g. Lyubarskii and Petrova (2000) and refer-
ences therein). This is the case only if the beam instability is most
efficient for θ = 0. We now argue that this is not the case.

We have shown (Gedalin et al 2002) that the efficiency of
oblique wave generation does not change much for small angles
of propagation. For the same growth rate the efficiency of the insta-
bility, in terms of the wave energy generated, is proportional to the
phase space available to the instability. The foregoing calculations
imply that the beam instability can be considered as (quasi)parallel
only for θ . 1/γ2

b ; in the range 1/γ2
b < θ . 1/γb the instabil-

ity is oblique in character. The ratio of the available phase spaces
for the oblique case is of order ∼ γb greater than for the parallel
case. It follows that the waves that grow are dominated by those
propagating at oblique angles.

4.2 Model for the amplification factor

A generic model for any form of coherent emission involves a sta-
tistical collection of elementary bursts, each of which is propor-
tional to a growth factor, G. For a wide variety of sources it seems
that G obeys log-normal statistics Cairns et al (2001). Here we are

not concerned with the details of the statistics, but it is important
to estimate the typical expected value of G to show that it is large
enough to account for effective growth.

Let us consider a single field line, or, more precisely, a narrow
magnetic tube in which the electromagnetic waves are amplified
in a burst of wave growth. Let I(ω, θ,R) be the wave intensity in
the unstable region. Then one has dI/dt = 2Γ(ω, θ,R)I . This
radiation transfer equation can be rewritten as

dI

dR
+
dθ

dR

dI

dθ
= 2ΓI, (15)

where the group velocity of the excited waves is vb ≈ 1, and the
evolution of the angle θ between the wavevector and the magnetic
field direction is described by (Barnard and Arons 1986)

dθ

dR
=

3φ

4R
− 3θ

2R
. (16)

For a field line φ/R1/2 = const. Eq. (15) is valid only in the in-
stability region, ω < ωc(R, θ). Let R = Rr(θ, ω) be the radius
where growth rate ceases (where ω = ωr). Beyond this radius the
mode ω ≈ k‖vb propagates up to the radius Rc where ω = ωc,
so that the angle θ continues to grow, while the intensity does not
change. Eq. (15) implies that the intensity at Rr is

I(ω, θ,Rr) = GI(ω, θ0, R0),

G = exp 2

Z Rr

R0

Γ(ω, θ′(R), R)dR,
(17)

where θ′(R) is the solution of (16) with the boundary condition
θ′ = θ at R = Rr , and R0 is the lowest radius at which the insta-
bility sets in:

θ′ = (θ − 3φr

8
)

„
Rr

R

«3/2

+
3φr

8

„
R

Rr

«1/2

. (18)

From Figure 4 the highest unstable frequency ωr remains al-
most the same for θ < θc ∼ 1/γb, and decreases approximately
linearly with the angle increase for θ > θc. Here we consider a
simplified model with

Γ(R, θ′) = ω

„
nb

np

«1/2
 

1

γpγ
3/2
b

!
H (ωr(R)− ω)H(θc − θ′).

(19)
This approximation implies either θ = θc and ωr(Rc) > ω or
θ < θc and ωr(Rc) = ω. The only dependence on the radius in
(19) comes from the step functions. Let the instability onset occur
at R = R0 on the field line with φ(R = R0) = φ0, and let the
initial wave parameters be ω, θ0. Then the amplification factor is

G = 2ω

„
nb

np

«1/2
 

1

γpγ
3/2
b

!
Rc, (20)

where Rc is the minimum of the two radii found from the condi-
tions ωr(Rc) = ω or θ(Rc) = θc. For ωr(Rc) = ω the final
propagation angle is

θ = (θ0 −
3φ0

8
)

„
R0

Rc

«3/2

+
3φ0

8

„
Rc

R0

«1/2

< θc. (21)

Neglecting in (21) the rapidly decreasing term ∝ R−3/2, one gets

lnG = 4

„
nb

np

«1/2
ωp0R0

cγ
3/2
b

×

(
ξ1/3 − ξ η < ξ1/3

η−2 − 1 η > ξ1/3
, (22)

where ξ = ω/ωr0 and η = 3φ0/8θc. Here we use ωr ∝ R−3/2.
Figure 8 shows the dependence of the gain G on (dimension-
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Figure 8. Gain as a function of frequency, ξ = ω/ωr0 (left panel), and
opening angle, η = 3γbφ0/8 (right panel).

less) frequency ξ and on the (normalized) field line opening an-
gle η. It is worth mentioning that the wave propagates at the angle
θ+ 3φc/2 . 5θc to the magnetic axis at the point where the insta-
bility ceases. The maximum beam half-width at the decoupling site
(beyond which the waves propagate along straight lines) is & 5θc,
which is ∼ 5◦ for γb ∼ 50. The simplified model used here ne-
glects the wings θ > θc, so that we expect that the resulting width
to be somewhat larger. The pulse half-peak-intensity width should
be determined by ωr = ω, so that we expect R ∝ ω−2/3 and the
width ∝ R1/2 ∝ ω−1/3.

5 DISCUSSION AND CONCLUSIONS

The above analysis shows that the nonresonant oblique beam insta-
bility may be quite efficient in generation of low-frequency electro-
magnetic waves for very wide class of particle distributions. In the
plasma which flows outwards in the diverging magnetic field the
nonresonant form of the instability is more important than the pre-
viously considered resonant form. The difficulties with the resonant
form included too small a growth factor and too high a frequency,
and both these problems are alleviated by invoking the nonreso-
nant instability. The unstable waves are in a beam mode below the
resonant frequency, and as the waves propagate outward the beam
mode joins onto the L-O mode, so that the waves can freely leave
the pulsar magnetosphere.

The most important requirement of any model for the wave
growth is that it be capable of accounting for the very bright emis-
sion observed. We estimate that an amplification is required from
an initial effective temperature, Ti ∼ γpmec

2, of the waves to
1023 − 1026K. For γp ∼ 10 one has Ti ∼ 1011K, so that an
amplification factor G ∼ 1012 − 1015 is required. From the anal-
ysis in this paper, this requires that the plasma parameters satisfy

ωp0R0/cγ
3/2
b & 100 at the site of onset of the instability. It should

be understood that this estimate constrains any beam instability sce-
nario, and no convincing case has been made that any known insta-
bility can satisfy it.

Yet another constraint follows from the observation that
the maximum intensity should be observed at the frequency ∼
0.1ωp0

√
γp. Together with the previous estimate one finds that a

frequency ω can be efficiently generated for ωR0/cγ
3/2
b & 100.

For γb ∼ 102 and ω ∼ 109s−1 one finds R0 & 3 · 106cm, which
is within the expected region.

The intrinsic frequency spectrum of a single burst of wave
growth possesses some of the features of the observed pulsar ra-
dio spectrum. The intrinsic spectrum decreases towards higher and
lower frequencies, and the slope also increases towards higher and
lower frequencies. The derived shape is not a power-law spec-
trum. However, this is a single-field-line spectrum, and the ob-
served power law spectrum results from an integration over a very
large number of elementary bursts of wave growth from a number
of field lines. Hence the observed spectrum should be determined
by the distribution of elementary bursts, e.g., as a function of the
frequency maximum and other relevant parameters. Thus, it is in-
appropriate to attempt to explain the observed spectrum in terms of
the properties of the instability alone.

The mechanism predicts efficient generation of electromag-
netic waves propagating at angles θ . 1/γb, which, for most ac-
cepted estimates, is within several degrees and typically less than
the observed pulse widths. The high-frequency, ω � ωp

√
γp, L-O

mode propagates along straight lines, so that additional refraction
zones are needed to increase the pulse width, unless the effective γ
participating in the instability are sufficiently low.

In the treatment here, the waves which are excited by the non-
resonant beam instability, are completely linearly polarized. This
results from our neglect of gyrotropy resulting from any differ-
ence in the distributions of electrons and positrons. Inclusion of
gyrotropy is essential when considering circular polarization, but
a detailed investigation of this point is beyond the scope of the
present paper.

Although the mechanism proposed here alleviates some of the
problems with other proposed beam mechanisms, it requires a rel-
atively high-density, low-Lorentz-factor beam. The required beam
must flow through the background pair plasma, requiring that it
have an even lower Lorentz factor. There have been several sugges-
tions as to how such dense beams might form Usov (1987); Asseo
and Melikidze (1998); Lyubarskii and Petrova (2000), and although
the mechanism proposed here is not sensitive to the details, such a
beam is an essential pre-requirement.
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APPENDIX A: PLASMA FUNCTION FOR
ULTRARELATIVISTIC DISTRIBUTIONS.

We consider ultrarelativistic distributions with γ2 � 1, v =p
1− 1/γ2 = 1−1/2γ2. Writing y = 1/2γ2 and x = z−1, one

obtains the following approximation for the dielectric function:

εs =
ω2

s

k2
Ws, Ws =

Z
dfs

y + x
, ε = 1 + εp + εb, (A1)

where fs is regarded as a function of y, and df = (df/dy)dy. The
normalization condition is

R
fdy/(2y)3/2 = 1. The corresponding

dispersion relation is

K2 =
x(x+ 2)W

(x− x0)(x+ x0 + 2)
, W = Wp + αWb, (A2)

with K = k/ωp, α = nb/np, and x0 = 1/ cos θ − 1. In what
follows we restrict our consideration to forward propagating waves,
K > 0, so that W is well defined for Imx > 0 and should be
analytically continued to Imx 6 0. Waves with Rex < 0 are
subluminal (ω/k < 1) and those with Rex > 0 are superluminal.

APPENDIX B: DIRECT REFRACTIVE CONVERSION.

Consider growing waves approaching the point ωc = ω where
the growth rate vanishes. As shown above (see Fig. 5), the only

Figure B1. Matching at the critical point ωc = ω.

mode which can propagate outwards (forward) beyond this point
is the L-O mode. Just before this point the only backward propa-
gating mode is also the L-O mode. Thus, at the point ωc = ω the
incident beam mode (ω, kix, kiz)and backward L-O (ω, kbx, kbz)
mode should match the forward L-O mode (ω, kfx, kfz) and the
evanescent mode (ω, kex, kez). The system is shown in Figure B1.
We describe the evanescent mode by putting kez = −iκ and fur-
ther κ → ∞. The electric and magnetic fields must be continuous
at the matching point. It follows that only nonzero components are
Ex, Ez, By . One also has kix = kbx = kfx = kex. For all these
modes one has

Ex

Ez
=

kxkz

k2
z − ω2

, By = zEx, (B1)

with z = ω/kz . There is an evanescent mode for |kz| → ∞ which
hasBy = Ex = 0, so that it should not be taken into account in the
continuity conditions for By and Ex, and continuity of Ez always
can be satisfied. Thus, one has

Eix + Ebx = Efx, ziEix − |zb|Ebx = zfEfx, (B2)

where we take into account that for the backward wave zb < 0.
Eq. (B2) gives

Efx

Eix
=
zi + |zb|
zf + |zb|

(B3)

In our case zi ≈ zf ≈ |zb| ≈ 1, so that Efx ≈ Eix, that is, the
conversion of the unstable mode into the forward propagating L-O
mode is almost lossless.
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