

Magnetic-field amplication near non-relativistic shocks

Martin Pohl

with Jacek Niemiec, Oleh Kobzar, and Artem Bohdan

Introduction

- Introduction
- Shock acceleration
- Magnetic turbulence
- New simulations of Bell's mode

Injection relates to shock structure

Structure of a perpendicular Shock

Thickness: Ion Larmor radius

2.5D PIC Simulation (Wieland et al.)

Elastic scattering on both sides of shock

- \rightarrow Energy gain per cycle $\delta E/E = v_s^2$ (Shock speed v_s)
- \rightarrow Acceleration rate depends on scattering rate on both sides
- \rightarrow How is the magnetic turbulence produced?

Is there evidence for strong magnetic turbulence?

With damping B>170 μ G

Radiation modelling indicates (turbulently) amplified magnetic field

Most radiation is produced downstream

→ a strong magnetic field downstream is sufficient

Shock acceleration relies on turbulent magnetic field upstream

Efficient shock acceleration requires

- Build-up of turbulence far upstream
- High scattering efficiency of the turbulence
- Very rapid build-up of turbulence

What drives strong magnetic turbulence?

Upstream:

Relative motion of cosmic rays and cool plasma

Shock	
plasma (e,p) u ₁ →	plasma (e,p) u ₂ =u ₁ /κ →
drift → ←	
cosmic rays (p) u _{cr} =0	cosmic rays (p)

Isotropic, slowly drifting cosmic rays

PIC simulations in periodic box

2.5D only!

Non-resonant parallel mode seen!

(predicted by Bell 2004)

B_z

Bell's wave mode

- Drifts speeds align
- Peak MF \sim 20 B₀
- Decays after peak
- Fast turbulent motion

Stroman et al. 2009

Earlier simulations of Bell's mode used periodic boundaries

Issues:

Spatial structure ignored Violation of continuity by bulk deceleration Neglect of interaction with "fresh" plasma

Can we run PIC simulations with open boundaries?

Setup of simulation

Kobzar et al. 2017

Ion density and magnetic field B_z at time close to saturation

Ion density and magnetic field B_z at the end of the simulation

Compression region

 λ_{max} is wavelength of fastest growing wave

Movie of electron density, magnetic field B_z , and electric field E_x

Profiles of moments of the distributions

Localized bulk deceleration

Compression results from bulk deceleration

Compression increases magnetic field

Electric field is largely motional

Plasma deceleration may be not as strong in real precursors

Estimate: Cosmic-ray pressure Pressure loss by kinetic work Expected velocity change With $v_A = 30$ km/s and $N_{e-fold} = 15$ Much more than sound speed

$$\Pi_{CR} = U_{CR} / 3$$

$$\delta \Pi_{CR} = -\rho_{up} V_{up} \delta V$$

$$\delta V = \frac{V_{up}}{6} \frac{U_{CR}}{U_{up}} = 2v_A N_{e-fold}$$

we find
$$\delta V = 900 \text{ km/s}$$

→ Steepening to a compression front?

Effect on cosmic rays

We can follow individual cosmic rays

Effect on cosmic rays

Calculate running diffusion coefficient

 $K(t) = \frac{\langle (x - x_0)^2 \rangle + \langle (y - y_0)^2 \rangle}{4t}$

Estimate diffusion coefficient by extrapolating to K=const.

Value commensurate with $D = \frac{r_{CR}^2}{\tau}$

Bohm diffusion for $c\tau = coherence length$

Effect on plasma

Kinetic-energy spectra in local flow frame

Strong bulk heating

High-energy tails

Similar for ions

Effect on shock!

Effect on plasma

Follow individual plasma ions

Effect on plasma

Highest temperature in regions of strong electrostatic fields \rightarrow Non-adiabatic heating by electric work

lon temperature

Electrostatic field amplitude

Summary

Turbulent magnetic field needed upstream of SNR shocks Bell's mode is an interesting candidate

New PIC simulations with open boundaries

- Fast magnetic-field amplification possible
- Bulk deceleration as feedback can create a compression front
- Quasi-Bohmian cosmic-ray diffusion
- Strong plasma heating

Significant modification of thermal shock must be expected