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What Is Space Weather?

Although “space weather” is a fairly recent term, there is a rich
history of similar terms being used beginning in the middle to
late 1800s. “Solar meteorology,” "magnetic weather,” and

“‘cosmic meteorology” all appeared during that time frame.
(Cade & Chan-Park, The Origin of “Space Weather,” Space Weather, 13, 99, 2015)

Table 1. Summary of the First Uses of Various Terms Related to Space Weather

Year Term Usage Originator
1847 Solar meteorology Sunspots and the conditions of the Sun’s atmosphere John Herschel, Herschel [1847]
1850 Magnetic weather Disturbances in the Earth’s magnetic field John Phillips, Phillips [1851]
1872 Cosmic meteorology Solar-terrestrial interaction Giovanni Donati, Donati [1872]
1953 Outer space weather Fictional aliens, studying the Earth, might ask “would the Fred Hague, Hague [1953]
climate be suitable for us since we are used to outer space weather?”

1955 Electrical weather Dynamics of the ionosphere and resulting magnetic disturbances Ann Ewing, Ewing [1955]
1956 Interstellar meteorology Motions and transformations of interstellar clouds Lyman Spitzer, Spitzer [1956]
1957 Space “weather” “The weather of interstellar space, the motions and composition Science News Letter,

of the vast clouds of matter in the void between stars” Society for Science and the Public [1957]
1959 Space weather Refers to measurements of the radiation belts by Explorer VI Science News Letter, Society for Science

and the Public [1959]

1964 Space weather Scientists are “trying to set up a space weather bureau which Walter Wingo (editor,

could give astronauts advance notice of solar storms.” Science News Letter), Wingo [1964]
1968 Space weather (first appearance Space weather forecasting as a part of the new Environmental Walter Hahn, Hahn [1968]

in peer-reviewed literature) Science Services Administration

Berrilli+, 2018, Isradynamics

Plate Il (“Tav. II") showing the instruments installed in the
Collegio Romano Magnetic Observatory (Secchi, 1861)

Father Angelo Secchi (International
Conference - THE LEGACY OF
ANGELO SECCHI 200 YEARS AFTER
HIS BIRTH, Rome, September 3-5,
2018, Biblioteca Casanatense) realized
a permanent magnetic observatory In
1858 In Rome In connection with
magnetic observatories In Stonyhurst
(UK), Manila, Ebro (SP) and Zi-ka-wel
(China).



What Is Space Weather?
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https://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather.htmi
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Space Weather Scientific Background
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Observed photo-
spheric B-ficld

Solar wind modelling

Solar wind model
(¢.g., Enhl)

Coronal model
(c.g., MAS)

Magnetospheric response to solar win

[onosphere and atmospheric
modecls (c.g., TING)

Magnetospheric model
(c.g., LFM)

from “Sol-Terra: A Roadmap to Operational Sun-to-Earth Space Weather Forecastmg Marsh et al, |n
www.stce.be/eswwl12
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Density modeling of the thermosphere for the de-
orbiting timeline of satellites and debris
(ESA/SSA) Is key Issue of Space Weather.

Two main topics in the description of the
thermosphere density are:

1. the use of appropriate solar inputs (especially
solar EUV)

2. the empirical modeling of thermosphere

response to solar and to geomagnetic forcings.

This specification iIs crucial for the tracking of low
Earth orbiting satellites.

(e.g., Dudok de Wit and Bruinsma, Geophys. Res. Lett., 38, L19102, 2011)
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The decay rate of the Solar Maximum Mission, which deorbited in December
1989, varied with the Sun's 27-day rotation and the solar cycle. This image,
which originally appeared in The Sun's Variable Radiation and its Relevance for
Earth (Annual Reviews of Astronomy & Astrophysics, 1997) is courtesy of Dr.
Judith Lean.

http://blogs.esa.int/rocketscience/2018/03/26/tiangong-1-reentry-updates/



Various EUV solar flux proxies can be considered:

1)
2)

3)

4)

5)

6)

the F10.7 index from Penticton Observatory, Canada;
the Mqgll index (LASP composite/Bremen Mg Il
composite);

the integrated flux between 26—34 nm from the SEM
radiometer onboard SoHO;

the s10.7 index, which has been built for orbitography
pUrposes;

Lya, the intensity of the bright Lyman-a line (LASP
composite);

XUV, the baseline of the dally soft X-ray flux in the 0.1—
0.8 nm band (GOES).

Geomagnetic activity Is represented by the planetary
geomagnetic index Ap (the Ap-index Is thus a geomagnetic
activity index where days with high levels of geomagnetic
activity have a higher daily Ap-value..

From Dudok de Wit and Bruinsma, Geophys. Res. Lett., 38, L19102, 2011)
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The decay rate of the Solar Maximum Mission, which deorbited in December
1989, varied with the Sun's 27-day rotation and the solar cycle. This image,
which originally appeared in The Sun's Variable Radiation and its Relevance for
Earth (Annual Reviews of Astronomy & Astrophysics, 1997) is courtesy of Dr.
Judith Lean.
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From UV to X-Rays, variability increases a lot with decreasing wavelength;
However, the bulk of electromagnetic energy at these wavelengths

Is absorbed very high in the Earth’s atmosphere (stratosphere and higher).
The UV (120-400nm) accounts for 1% of the TSI, but 14% of its variability.

from McGillAOS 19/01/2015 9
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- Launched on 17 March 2009, ESA's Gravity field and
steady-state Ocean Circulation Explorer (GOCE)
mission was the first Earth Explorer mission in orbit.

- GOCE mission delivered a wealth of data to bring about
a whole new level of understanding of one of Earth's
most fundamental forces of nature — the gravity field.

- This high-tech gravity satellite embodied many firsts In
Its design and use of new technology In space to map
Earth's gravity field in unprecedented detalil.

- On-board ultra-sensitive accelerometers used to create
dataset of 10s sampled thermospheric density at 260 km
altitude available at ESA GOCE Archive (01/11/2009 -
20/10/2013)

https://www.esa.int/Our_Activities/Observing_the Earth/GOCE/Introducing GOCE
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The colours in the image represent deviations in height (-
100 m to +100 m) from an ideal geoid. The blue shades
represent low values and the reds/yellows represent high

values.
http://www.esa.int/spaceinimages/Images/2011/03/New_GOCE_geoid
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In order to investigate the different contributions to variations in p, the empirical mode
decomposition (EMD) of thermosphere density and solar and geomagnetic indices (guasi-periodic
and non-stationary) during GOCE mission has been performed.

2An/\ = ' (a) Generally speaking, the sifting process (to
separating out components of a sighal one at a
time) produces a set of IMFs that represent

T e B N .

0 "\\ /f"\ }‘\\ /A\\/\ /ﬁ\¥/ the original data vector broken down into
2 wen \B Y AN 2 frequency components from highest to

| IMF1 = (Original signal - Mean value) (C) 2 Iowest frequen Cy

: (ggM) ; 1 ) |rallofthe IMFs for a given signal are added

ﬁ/\/\/\/\/\/\/ together, the resulting “summation” signal is a

near perfect match for the original signal (i.e.,
with little or no leftover), yielding a high level of
EMD decomposition of two waves signal, (a) sum of two waves, (b) lower COnﬁdence in the EMD reSUItS

and upper envelopes (red) and their mean (blue), (c) the first IMF and (d)
the first residual (after Oonincx and Hermand, 2004).

0 2 4 6 8 10 12 14 16 18 20

(from Hassan & Peirce, 2008)
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10 IMFs for Ap have been identified (+ residual
trend)

* the first IMFs are relevant for the impulsive Ap
Index;

 the residual shows a monotonic profile
(geomagnetic activity 1 when solar cycle 1);

* the amplitude of the oscillations 1 during
magnetic storms.

8 IMFs for Mgll have been identified (+ residual
trend)

* IMF3 (and 2) are associated to 27-day solar
rotation;

* the residual trend shows that Mgll index 1
when solar cycle 1 because
chromosphere/photosphere ratio 1;

* IMF2 and IMF4 are particularly important
during the of high solar activity period.
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The approach used to reconstruct the GOCE mission thermosphere density signal Is
schematized In the following steps:

1. Input data loading: the daily-averaged thermosphere density p, the daily-averaged
geomagnetic index Ap and the solar flux indices F10.7 and Mg II are considered.

2. Solar and geomagnetic indices time shifting: A 9h time delay I1s assumed for Ap, no
time delay for solar indices. A cubic spline interpolation Is used for Ap (1d sampling).

3. EMD sifting process: applied to GOCE density and activity indices to extract the
corresponding IMFs (IMF Ap, IMF F10-7 IMF M3y and trends (res4?, rest19-7, resMgll),

4. Thermosphere Density Model(s): Iterative data analysis for Ap and solar indices a
weighting factor and a sub-set of IMFs (Including the residual trends) are selected (Monte

Carlo approach and exhaustive analysis).

Density signals are reconstruction for the whole period and for different solar activity levels.
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Conclusions

- Low and medium solar activity: the best reconstruction combine IMFs from
Ap, F10.7 and Mg II solar flux indices. For medium activity the use of only Mg
II does not lead to significant worsening and can be preferred for simplicity.
Density can be reproduced with a RMS error of 2.6% and 7.4% for low and
medium activity, respectively.

- High solar activity: the best reconstruction combines IMFs from Ap and Mg 11
Indices. The RMS error is below 14%. Peaks are well-reproduced.

- Whole mission: the best reconstruction combines IMFs from Ap and Mg 11

Indices. The reconstruction presents period of over/under-estimation. The RMS
error Is about 11%.

. Secular trends In the thermosphere density can be derived using historical
records of Mgll, F10.7 and Ap.

Berrilli+, 2018, Isradynamics



