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Abstract

In this work we study the dynamics of a particle on a ring in presence of a dissipative
Caldeira-Leggett (CL) environment. In the first part of the work we study this model
using the Keldysh non-equilibrium formalism to derive the particle’s response to an
external DC field. From the response we find the renormalized dissipation nf* up to
second order and using a renormalization group analysis find that for a large dissipation
parameter 7 > 1. % flows to a fixed point 7. = h/2r. We also study the semiclassical
limit of the problem where we show that the model reduces to a Langevin equation and
study the equation numerically. For the semiclassical limit we also expand the model
for a more general environment, that of a dirty metal (DM).

We reexamine the mapping of the CL problem to that of the Coulomb box and find
that a certain average of the relaxation resistance is quantized for large n and propose
a box experiment to measure the corresponding quantized noise.

In the second part of this work we study equilibrium properties. Using the Matsub-
ara imaginary path integral formalism we analyze the model perturbatively for both
large and small . We develop a Monte Carlo (MC) algorithm to solve this problem.
However, when the flux through the ring is half the quantum flux, we encountered the
the infamous sign problem, hence our numerical data cannot identify n't.

Motivated by the small n behaviour of the particle in the classical limit, we consider
in the last part of this work the winding angle ¢; around the center of a smooth
Gaussian process in the plane with arbitrary correlation, where the CL correlation is
but one choice for this correlation. We obtain the stationary distribution of qf)t as well
as a closed formula as a function of the correlation function for the variance of the
winding angle, the correlations of €t with integer n and the variance of the algebraic

area enclosed by the process. Those results are tested numerically.
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1 Introduction

Conductance in the context of quantum mechanics is shown to be quantized in various models
such as the quantum Hall effect and one dimensional wires. In this work we discuss a new
case of conductance quantization for the model of particle on a ring affected by a noisy
environment and relate it to the quantization of the relaxation resistance in a single electron
box (SEB).

Following the prediction of Biittiker, Thomas and Prétre [4] the quantization of the
relaxation resistance R, defined via an AC capacitance of a single electron box (SEB) is of
recent interest. The theory has been recently extended to include Coulomb blockade effects
[5] showing that R, = h/2e? is valid for small dots and crosses over to R, = h/e* for large
dots. A quantum mesoscopic RC circuit has been implemented in a two-dimensional electron
gas [6] and R, = h/2e? has been measured.

The problem of a single particle on a ring under the influence of a dissipative envi-
ronments has been considered in many theoretical past works particularly for studying the
renormalization of the mass M* and its possible relation to dephasing [7THIT]. A recent study
has observed Aharonov-Bohm oscillations from single electron states in semiconducting rings
[12].

The common prototype for the description of a dissipative environment is that of Caldeira-
Leggett (CL) [13], where the environment is modeled as a large set of oscillators linearly cou-
pled to a quantum system. In this work we present a detailed study of this model, namely a
particle confined to a ring, driven by a tangent electric DC field. The latter is caused by a
magnetic flux through the ring linearly changing in time and subjected to a CL environment.
A schematic figure of the model is given in Fig. [T}

There is a known mapping between the SEB and the model of a particle on a ring affected
by CL environment [14], [15]. While the exact mapping assumes weak tunneling into the box

with many channels, it has been extensively used to describe various tunnel junctions [16],



Figure 1: Model of a particle on a ring affected by a noisy environment. A tangent electric
field £ or an equivalent magnetic flux through the ring that increases linearly with time
creates a force on the particle, while a dissipative environment creates noise with long range

time correlation and a frictional force on the particle.

the Coulomb blockade phenomenon in single electron box (SEB) and in the single electron
transistor (SET) [16-27].

In the main part of this work, section [2| we study this ring model using the Keldysh
method for non-equilibrium dynamics and a renormalization group (RG) reasoning. We
find that a small parameter in the perturbation theory contains a periodic function of the
dissipative parameter n, this parameter is mapped to the lead dot coupling in the SEB. The
RG equation suggests that this dissipative parameter flows to a fixed point n = 7. with
Ne = % We also examine the mapping between the two models and show that a certain
average of the relaxation resistance R, is quantized for finite n > 7. [2, 3].

A related approach for the study of quantum systems coupled to dissipative environ-

ments is the influence functional of Feynman-Vernon [28], which express the influence of the



environment on the system. An exponential decay in time of the functional identifies a de-
phasing time 7,. Using notations of the present work the attenuation factor is F; = e’%éf,
which for a dissipative environment at high temperatures is ~ e~/ and C. is a correlation
function of the system to be define later. A study of mesoscopic systems coupled to both
an external driving force and to a dissipative environment [29], found that the two effects of
the environment, dissipation and dephasing, as described above, are competing effects. The
dissipation mechanism in the system corresponds to Landau-Zener transitions through a gap,
i.e. avoided crossings, e.g. as for rings with static disorder. Dephasing is the destruction of
quantum coherence, the latter being responsible for localization in energy space. The destruc-
tion of localization therefore enhances the rate at which energy is pumped into the system,
increasing the Landau-Zener transition rate. A competing effect is the relaxation, i.e. the
rate at which energy is leaving the system into the environment. Due to interplay between
these two effects the conductance depends on the external field in a nonmonotonic way. In
a recent work [30] dephasing of the particle in a ring coupled to dissipative environments of
either CL or DM types was calculated in small n perturbation at finite temperatures.

In section [3| we study this model in Equilibrium, both perturbatively and using Monte
Carlo (MC) simulations and try to show this phase transition. However, we encounter a sign
problem, so that the MC results are not conclusive.

In section 4| we study the behavior of an arbitrary correlated noise (or process) on a two
dimensional complex plane. For such noise one can define the norm and the phase of that
noise in the form & = & + i€} = |&] et where f,f:x’y are a real Gaussian noise function
with arbitrary correlation function which is independent of i. Specifically we ask what is
the time correlation function and other related properties of the noise phase ¢; and how are
these properties depend on the corelation function of &/. We give a detailed answer for this

question.

This section is motivated by the Langevin equation of section . For the case where the &



correlation function is that of CL ¢; corresponds to the semiclassical solution of the particle
dynamics in the small 7 limit. This section was published in [I].
A proposed box experiment that verifies the result in section [2|is given with the summary

of the work in section Bl



2 Particle on a ring and the coulomb box in dissipative

environments

2.1 Introduction

In the present section we address the problem of a particle on a ring affected by a CL
environment and find that the dissipation parameter 7 is quantized. We examine the mapping
of the SEB to this problem and relate this quantization to the known quantization of the
relaxation resistance R, in SEB. The essence of this section was published [2] (reprint in
appendix |C]) and future publication is in preparation [3].

We begin in section with examining the mapping of the SEB problem and the ring
model. In terms of the SEB, our results extend the previous analysis [5] of the relaxation
resistance R, to the case of many channels N, [3I]. We note that for N. > 1 the relaxation
resistance for noninteracting electrons becomes h/(2N.e?) [4]; no result exists for interacting
electrons. We find that for strong coupling, /h 2 1 the relaxation resistance is quantized to
e2/h up to an exponentially small correction ~ e~™/", For finite 5, but still n > 7. we find
that a certain average of the relaxation resistance is quantized (see Eq. below).

In our approach to the study of the ring problem, we evaluate the response to a strictly
DC electric field E, equivalent to a magnetic flux through the ring that increases linearly
with time, meaning a non-equilibrium response. We therefore use a real time Keldysh method
which is derived in section [2.3] While thermodynamic properties of ring problems has been
much studied, including extensive MC studies [19, 20] of M*, no sign of a finite coupling
fixed point has been detected. We claim that thermodynamic quantities like M*, that are
flux sensitive, decouple from the response to electric field E, a response that averages over
flux values.

In section we consider the semiclassical limit of this action, which is equivalent to

the large dissipation limit, and find perturbative results for the Green’s function in powers of



large . These results are compared with known results [I7, [I§] from equilibrium formulation
and we discuss a possible reason by which a nonequilibrium formulation of the problem gives
different result. In the following section [2.5| we show that the above semiclassical action
relates to a Langevin equation, and study the equation using numerical simulations. We
discuss limitation of the numerical procedure. In addition to the CL environment we study
in section the more general case where the environment is not that of CL but rather that
produced by a dirty metal, the relevant Langevin equation is derived and some numerical
results are shown.

In section we derive the large n perturbation for the quantum problem and in
we address this expansion as a 2-loop RG equation. We find that the perturbation theory
identifies an unexpected new small parameter sin(%) and infer that a large n flows to the
above mentioned fixed point n® = 7.An intuitive argument for this quantization as well as

the conclusions are given in section [2.9

2.2 Mapping between the particle on a ring and a Coulomb box

In the present section we examine the mapping of the box and ring problems. The action for

the SEB is given by
S = /{Z dTom(Zhat - 606>d0m - EC(N - NO)Z} + Slead + Stun (21)
t an

where d,, are dot electron operators, n = 1,..N, labels the channels, N = > an dl o,
E. = e*/(2C,) with C, is the geometric (bare) capacitance, Ny is proportional to the gate
voltage, Sjieqq describes free electrons on the lead and S, is the tunneling between the lead
and the dot. We introduce an auxiliary variable 6, with an action F. ft[N — Ny — 1o /2E,)?

and rewrite the total action as

) K262 .
S = /{Z dln(lhat - 604 - het)dan + 4_E’t + N[)het} + Slead + Stun . (22)
t an c



In terms of fermion operators dn, = ¢?®d,,, integrating out these fermions and expanding
in Sy, yields the well known effective action for the SEB [14HI7, 19H27]. Eq. shows
that the equivalent particle on a ring has a mass M = h?/(2E,) (the radius of the ring is
chosen as = 1) and there is a flux (in unit of the flux quantum) ¢, = —Ny through the
ring. The tunneling amplitudes squared, weighted by the number N, of channels, become
the dissipation parameter 7 of the particle. The mapping becomes exact in the large N, limit
at fixed n and for small mean level spacing [32] A < E,, a situation that can be realized [31];
the application of this mapping is therefore limited to the temperature range A < T < E..
Furthermore, by shifting 6, — ho; + 2E0(Nt — Ny) we obtain h(9t> = 2EC[<N>N0 — No| and

also a relation between response functions
WK,y = —2Ehé(t—t)+4FE* K, (2.3)

where K,y = +i60(t —t'){[6;, 0]) is the response for the ring while K, = +i6(t —t')([Ny, Ny])
is for the SEB. The —2E_ hd(t—t') term in is essential, e.g. without tunneling the charge
fluctuations are frozen, K;, = 0, while the corresponding particle is free with the correlation
—2E.ho(t —t').

2

The SEB response is parameterized as [5] <K, = Co(1 + iwCyR,) where Cp is the

effective DC capacitance and R, is the relaxation resistance [4]. The corresponding K is

parameterized as
K, = —Ko(¢.) + iwK,(¢,) + O(w?). (2.4)

The fluctuation dissipation theorem (FDT) relates IN(W and the linear response to dH,in, =
+hB5¢,(t)

i) = = [ Kuvbonlt) (2.5)

The response term K, corresponds to the persistent current, i.e. for a time independent flux



one can integrate the last expression to get
. Z
() = i Ko(¢,,)dd, (2.6)
The continuation to imaginary time identifies the curvature of the free energy [7HIT [14], 15],
or an effective mass, as %g%: = h/M*(¢,) = Ko(¢z); e.g. without tunneling M* = M while
for large 7 the effective mass M* ~ e™/" is exponentially large.

Consider now the system in presence of a (classical) electric field E, of Hamiltonian
OHying = —(E + 0E(t))0 and define the linear response 6(6;)p = [, Ripy0E(t') to a small
perturbation § £. This response is studied below for a DC field. In general its low frequency
form is (see Eq. below) R, = m which defines n{(E) as a renormalized dissipation
parameter. Since E = h@ we expect hw?R, = K,,, hence the K, term in Eq. is not
reproduced. To resolve this discrepancy we note that an additional constant flux ¢, in the
total flux ¢, + Ft/h can be eliminated by redefining the origin of the time ¢, therefore the
persistent current part should be eliminated. More precisely, define h¢,(t) = Et; the 1st
term in Ko(¢,) = Ko(Et/h) becomes a periodic function, i.e. an AC response at
wp = 2rE/h. For a DC response at finite E this persistent current response averages to
zero, i.e. fol Ko(¢,)do, = 0. The same reasoning applies to a ¢, average on K;(¢,). Hence
the DC response to a DC field is given by

i 1
lim lim — = z'/o Ky (¢y)do, . (2.7)

E—-0w—0 W

Therefore h/n® = fol Ki(¢,)d¢, where we denote n* = n®(E — 0). The order of limits in
signifies that n® is essentially a non-equilibrium response. The physical picture is that
in a DC field the particle rotates around the ring and produces two types of currents. First is
the persistent current that oscillates in time as ¢, increases and is therefore time averaged to
zero; this current is non-dissipative. Second, there is a genuine DC response from the 1w K;

term, which is dissipative.



In terms of the SEB response, using Eq. (2.3, we obtain the following mapping of ring

and box parameters as functions of flux ¢, and Ny:

M GolMo)
M (¢x) Cy
h 62 103(]\[0)
3 - % /0 e BalNo)aN (28)

and we note also that fol Co(No)dNy = C,,.

2.3 Keldysh path integral formulation for action on a ring

In this section we introduce the model used for the particle on a ring in non-Equilibrium. To
derive the Keldysh action [33] 34] , we start from the known partition function of a particle

in a CL environment [13]

7 — /DA . e OK %3] (2.9)

the action Sk in two dimensions with a position vectors x*, where 4 correspond to the upper

and lower Keldysh contour is

SK[X, )’\(] = Z/ )A(th_tl/Xt/ + é/ )A(tBtVt/)A(t/ (210)
tt! ’ ¢t
the fields x, = 3(x; + x; ) and %, = 3(x/ — x;) are known as the classical and quantum

fields respectively. The retarded and the Keldysh Green’s function in time and frequency
spaces are

R, = %(1 —e MO Ry = —1/[me? + in] (2.11)
B, = —hn/ (77?) 7#0 B, = hn|w|.

This quadratic action corresponds to a particle of mass m and a friction parameter 7 within

a Langevin equation

M% + % = &, (2.12)



each component of §; = (£, &/) is a random number with correlation function <|§z|3> = B,0i;.

We project the position on a 2 dimensional ring by
z =[cosO(t),sinf (t)] x; =[cosO_(t),sinb_(t)] (2.13)

and implicitly assume R = 1 and all parameters are length dimensionless. Writing the action
in term of classical and quantum angle fields 0, = 1[0, (t) 4+ 0_(t)] and 0, = F04(t) — 0_(2)).

With some algebra the action is

21 h - h
Sk = —Z/ R, sin(=0;) cos(=0y) sin(0y — ;) +
h t,t/ ’ 2 2
4 . hao B
= y By s1n(§¢9t) Sln(§8t/) cos(By — 6) (2.14)

2.3.1 Definition of Green’s function and of renormalized dissipation

The renormalized retarded and correlation Green’s functions are defined by

7; <ét’0t> - th/ <0t’0t> - Ct}:it’ <9t> - URt. (215)

Causality always ensures that always <ét> = <étét/> = 0. In the following we calculate (2.15

perturbatively in 1/5. We identify the normalized dissipation by

1
= iiir%)(—iw)Rf. (2.16)

Which is equivalent to the definition by derivation of the velocity with respect to the external

field,

1 dvft d ;. </ - > / d S
— = === ()= 0.0y Yy = | —RE, = // —iw Rﬁe“"(t’t) =
nt dE dE< t> PR odt t’,w( )

lim iwR? = lim R, (2.17)

w—0 T—00

10



2.4 Semi-classical limit of the action

For the semi-classical limit of the action, which is equivalent to the large 7 regime the
quantum field is taken to the linear order Sin(gét) — gét and cos(%ét) — 1. In this limit
the retarded part of the action turn Gaussian while the correlation part remains a non-linear
one. Therefore we solve this action perturbatively around Sy which contain the retarded
function. The model partition function is Z = fD l e~ %0~ Smt with

S()—Z/ Htht,Ht/ ZE/Qt/ —z/ 19 Q_w—zE/Qt/ —z/ 0, tt,(%’t/ (2.18)

7

1
Sint = - / QtBt,tIHt COS(@t — Qt’)-
2 t t/

)

where in the last equality of Sy we define 6, = §6, + vt with v = E/n. With the above action

the bare Green’s functions are

/A E
1 <9t/6t>5‘0 = Rt,t/ <9t>So =t = Et <9t/9t>50 =0 (219)

In the following we calculate the renormalized Green’s function up to second order in S;,;

which is equivalent to orders in 1/n

Rt = Rt R + Rt t + Rt = Rtﬂt’ + 1 <ét’9t(_sint + QSZQnt)>S
0
Cr = Cfy) + CF) = (000,(—Sime + 352)). (2.20)

and use it to identify the dissipation parameter.

2.4.1 Perturbation for the retarded function

The Retarded Green’s function for first order in the perturbation

A 1 A A A
Rilt)/ =1 <9t’9t(_5int)> = —Z—/ Btth <9t19t2 COS(Qtl — 9t2)9t/9t> (221)
’ So 2 it So
After derivation (appendix [A.1]) the function in frequency space is
RW = RZ/ R, |B) —BS_, | =R’ /RtBt cosvt (e —1) (2.22)
w1 t

11



where B!, = % (Bysw + Bu—y). and the renormalized 1 up to first order is

1 —w

— = lim(—iw)RW =1 —/RB t (wt) = log(1 2 Jv?

o WILI(I)( iw) R lim A ; cos vt (iwt) o og(l 4+ w;/v")
hlogv/w,

=t O(v) (2.23)

where w, = 1n/m is the high frequency cutoff. Using the same procedure Rﬁz = % <ét/ Qt(Sm)2>
(appendix |A.2]) we get

R® = R?

w w

1 , - .
(—5 /RtBt cosvt (' —1) Cy + /Rt(l)Bt cosvt (e — 1)+
t t

2
R, [/RtBt cosvt (e — 1)} - / Ry, By, By, sin vty sin vta(1 — ei“’tl)h) (2.24)
t t1,t2

with OV = Q(C’t(i)o - C’fl)). The renormalized 7 to second order

1 1 h h?

= e + ——=(log? v/w, + by 1 o 2.25
G ogv/w +7T2773<0g v/we + by logv/w,) ( )
where by depends on the order of limits taken in the last expression, as explained in the

following section.

2.4.2 Equilibrium and nonequilibrium limits

Taking into consideration the first three terms in the above expression for R we find

1 1 h h?

— == — —logv/w, + ——=(log? v/w, + blog v/w, 2.26
775Dbnmﬁg/ 7T2773(g/ gv/we) (2.26)
The contribution of the forth term is unique since it depends on the order of limits taken.
In a 'nonequilibrium’ we need to derive the dissipation term in presence of the external force

E. As defined in we first take w — 0 and then treat the field F as our RG cutoff, taking

12



into consideration its logarithmic diverging contribution. The expression is then

1 1 .
— lim lim — By, By, sin vty sin vty (1 — ")ty =
= lim lim - /ﬂ’t2 Ry, By, By, sin vty sin vty (1 — ™)ty

1 h? o o}
——lim | Ry, By, sinvty t%/ Ry, By, sinvty = lim / sin(vty) X / sin(vty)/t3 =

n° v—0 Juy 2 v—0 7'('2773
) 2 1 h2 1
}}L% Py x vlogv + O(v) = oy ogv (2.27)

With this contribution we find b = 0. If instead we consider an equilibrium order of limits

we take
lim lim sin(vt;) sin(vty) = 0 (2.28)

w—0v—0

and vanishes. In this case b = —1 which recovers the known equilibrium results [17].

2.4.3 Perturbation in correlation function

The perturbative correlation function is similarly defined oM — (040 (—Sint)) So

Ct(,? = _%/ Bthtz <ét1ét2 COS(QH - 6)752)9t’9t> =
t1,t2
[ . Btl,tz COS 'U(tl - t?)Rt,tht’,tQ (229)
1,2
In Fourier space
C = |R,* B, (2.30)

because CS:)O diverges it is useful to evaluate Cy» = ([, — 6y]?) which to 1st order is, with
T=t—t (1< 1/w)

log(nt/m) 7<1/v
2h

CcW = / B® |R,|* (1 — coswr) ~ — . (2.31)
w )
Tr/2 1ljv<T

We can confirm that for v = 0 in that order of n FDT is valid as

CW],—o = ImR(w)h sign(w) (2.32)

w

13



2.5 Langevin Equation

The semiclassical action corresponds to the Langevin equation

mb, + nét =& cosby + & sinb, + E (2.33)

(6160,) = Bud(w + w')dy; (&) =0

Where the noise term ¢, has a Gaussian weight. The MSR, [35] method relates this Langevin
equation and the semi-classical action Eq. (2.18). The partition function describing the

Langevin equation is
Z = /D[@, & o (m@t + 1y — £ cos O, — ¥ sin b, — E) e lel/2B() (2.34)

Introducing the 'quantum’ field § by 6(X) = [ DI6]e?Xt, and averaging over the noise field &
will result in the semi classical partition function Z = [ DI, 0)e=5199 where S[6, 6] = So+ S

is given by Eq. (2.18).

2.5.1 Numerical solution of the Langevin Equation

We solve the above Langevin equation numerically. The time is discretize to t = T/N X
(1,2,...N), with T the total time span of system. The noise term & is generated numerically
using a discrete Fourier transform of ¢!, = /B, TR® where R is a unit white Gaussian noise.
The correlation function linearity requires introducing a high frequency cutoff 5. We choose
the cutoff to be in Lorenzian form B,, = hnjw|/[1 + w?73], in the following section we explain

the importance of this choice.

We solve the equation in iterative procedure. Using the convolution form
Qt = / Rt,t’ [éép/ COS Ht/ - fz sin Qt/ — E] (235)
tl

starting with an arbitrary configuration of ng) we calculate the equation RHS to find a new

0,5(1). We repeat the procedure n times until the expression is saturated when an) = 9,§"+1) :

14



This procedure is improved if instead of taking the convolution result as the next order 6,
we use some mixing of that result and of the previous #; configuration in the form Ht(m) =
(1— 6)9t(m_1) + 3 x RHS where 3 is mixing parameter. Typically n would be in order of 103
and = 0.1.

2.5.2 Fluctuation dissipation relation and cutoff

The fluctuation dissipation relation requires ImR,, = hsign(w)B,,. Adding cutoff 7 to the

noise term B,, requires adding it also to R,,. Following [36] we choose
w
R = —mw? — B/ —— SR (2.36)
1 —wry
This choice of cutoff has the property that both R, and its inverse have no poles in the upper
half plane. This property is required to ensure there is no causality breaking, the interaction

cannot influence either the particle’s past nor the environment’s past. In the time domain

this variant of the retarded functions rapidly oscillates for 7, — 0.

1 1—x? . —t/om 4nT
R, = @(7)5 {1 - [ o sin(xt/279) + COS(JZt/QTg)] e7t/? 0} r = \/% —1.(2.37)

Fluctuation dissipation is satisfied for the correlation function

hin |w|

B,=——F-. 2.38
1+ w?r? (2.38)

With this choice the Langevin equation takes the following form
mby, = €% cos Oy + &/ sin b, + E + A, (2.39)

JAVIE % t sin[f, — Op)e” /gy,
7o J—co
where A; is a correction term define by the term dR;! in the response function of Eq.

as [, 5R;t1, & cos Oy + &) sinby + E] = — [ mw?A,
In the numerical system we now have four time scales, the two numerical time scales,

AT = T/N the time segment and 7' the time span, and the two physical high frequency
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cutoffs, 7y cutoff for the noise and w, mass cutoff. The region of interest where the velocity
vl = <9t> is between those time scales AT < 79 < 1/w. < 1/vf ~ 1/v < T. The inequality
7o < 1/w, is useful since we compare the numerical result to an asymptotic result in which

w, rather than 1/7q is the high frequency cutoff.

2.5.3 Dissipation parameter

With the result for §; we can find the renormalized 1/nf = dvf/dE with vt = <¢9t> where
the average (-) reflects an average on both the time domain ¢ > 1/w. and on numerous
realizations of the noise.

In the left panel of Fig2] our numerical solution for the Langevin equation is shown, with
a fit to the second order from both the nonequilibrium result by = 0 and the equilibrium
by = —1. It is shown that the first is a better fit for the Langevin equation. When 1/v
approaches the simulation time span 71" the numerics become unreliable, as T" becomes the
effective low frequency cutoff instead of the external field, and a plateau is observed at low

E. In the right panel of Fig2] we plot the the same data after subtraction of first order
asymptotic results of Eq. (2.24)).
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Figure 2: Left panel: Velocity-field relation for Eq. with n = 30h/7, w. = 100/79
and 79 = 20A7. Here N = 2% A7 = 1/20. The circles are numerical data, the full red
line is a 1st order perturbation in 1/7, the dashed lower red line is its logarithmic expansion
for large Inv/w, and the dashed upper (black) line includes the 2nd order logarithmic term,

corresponding to Eq. ([2.25)) for by = 0.

Right panel: The same data after subtracting the 1st order terms, i.e. E® _ B _q_

nv nv

W—Z(ln o 1). An additional dash-dotted line corresponds to by = —1, which is a worse fit to
the data then by = 0 (dashed upper line). Note that the numerical data displays E/v rather

then dE/dv, hence Eq. (2.23]) acquires a —1 term.

2.5.4 Fluctuation

With the numerical results for 6, we can create the correlation function C{" = (16 — 6o]?),
the first order perturbation for this correlation function is given in Eq. (2.31). In Figl3| we
plot the correlation function as a function of the time separation 7 for the same parameters
as in Fig[2] with and without a finite field. It is shown that for zero field the correlation has
a subdiffusion logarithmic behavior while for finite force the correlation has a diffusion (~ 7)

behavior.
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Figure 3: Left panel: The correlation function Eq. (2.32). and the asymptotic results of
Eq. (2.32) (red) for E = 0. Right panel: The correlation function as a function of time
(Blue) and the asymptotic results of Eq. (2.31)) for E/n =1 and 75 = 1.

2.6 Dirty metal environment

A useful model for a noise producing environment is the CL [I3] framework in which the
environment is a set of oscillators, all linearly coupled to the particle. This is the environment
we have used in the previous section. A more general way to characterize the environment is
by its dielectric function, which for a dirty metal (DM) at low wavevector q and low frequency
w, is

1 —iw+ Dqg?
e(quw)  dwo

(2.40)

where D, o are the diffusion coefficient and the conductivity, respectively.

In this section an equation of motion for a particle on the ring where the environment is
that of a dirty metal is derived. The particle at position r(¢) on the ring has a charge density
p(r,t) = ed®(r —r(t)), the energy in the system is U = [ ¢(r,t)p(r,t), where ¢(r,t) is the

potential. This potential is produced by the polarization of the environment by the particle,
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in momentum and frequency variables

¢(q,w) = a(q,w)p(q, w) (2.41)

where the response function is defined in terms of dielectric function £(q, w)
A

¢*e(q,w)’

We assume £(q,w) of the form (2.40). The retarded potential at the particle position r(t) is

a(q,w) = (2.42)

given as

:/t,/r/oz(r(t) St — ), ) :e/t/oz(r(t) (), t— ) (2.43)

The force is F = —eV ¢, its projection on the azimuthal direction is F| (¢, 0(t)) = —50¢(t, 0,),

hence the equation of motion for the particle is
mRH(t) = =00, 6(00,t) + (6, 1) (2.44)

where f(6;,t) is a fluctuating force with zero average. The response in the position and time

domains is

a(X =r(t) —r(t), 7=t —t) /1/1/ (_—M + D> —iaX—iwr (2.45)

The diffusion term yields (), hence it is X independent and does not contribute to the

force. With an elastic mean free path as a cutoff on the momentum ¢ < 1/1 the first term is

1 1 . —iWwT
a(X(7),7) = m\/ﬁ w(—lw)e
The displacement vector on a ring is |X| = ‘QR sin <0t_2¢) ‘ With the Fourier expansion

(4r%sin’(z/2) + 1)_1/2 =1->"" a,sin*(nz/2) where r = R/l, the azimuthal drag force is
e e? ,
F||(9t, t) - __89t¢(6t7 t) - __89t / OZ(Ht - et/,t -t ) = (246)
t/
Z —qu, sin ( Qt/))] /(—iw)e_i“’(t_t')
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The frequency integral equals —0yd(t — t'), integration by part of the last equation and the
relation Y n?a, = 2r? yields

.[7” (Qt, _87'('_0'@ Z n Oéngt ——Eet —T]Ret (247)

This identifies the friction coefficient n = %l% The Fluctuation dissipation theorem at zero

temperature determines the symmetrized correlation function of ¢

Ky(q,w) = —h sign(w)Ima(q, w) (2.48)

K¢(9t—9t/,t—t')=% ll—Zansm?( b )]/|w|

The S;,; term in the action [2.18]is the correlation function of the force, is a double differen-

tiation on Ky

2
Sint (9t - 9t'7 t— t/) = %aetae Kqﬁ (9 - et’ t— t/) = (2-49)
Z n“ay, cos ( —0y)) Bey

This correlation is satisfied if the noise terms are as in the following Langevin equation

mR6, +nRO;, = Z %{f{"m cosnb, + &V sinnb,} + E (2.50)

(€2 = I lw| S(w — @) i=ux,y
and an external field F is added. Note that in the limit » < 1 the CL equation ([2.33)), is
reached with a7 = 2r? and a,,~1 = 0.

2.6.1 Normalized dissipation

The normalized dissipation parameter as in [2.21] is,

/A 1
R;lt)/ = 1 <8t/6t(_5int)>so = Z 27‘2 / Bt1 o <0t16t2 COs ’I’L(Qtl (9t2)9t/9t>50
4
= Z a;rz R? /RtBt cosnut (™' — 1) (2.51)
n t
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the time integral gives ~ lognv/w. = logv/w. + const and the dissipation parameter in first

order is
1 h ann h
e L | . n O = ——(1+9r?)1 .+ O(° 2.52
e p— ogv/w zﬂ: 572 + O(v") 7T772( + 9r%) log v/w, + O(v") (2.52)
where we have used ), 03134 = 07 (4r%sin®(2/2) + 1)71/2 |.—o0 . Similar result for the dissi-

pation in a dirty metal environment were derive by variational method [L1].

2.6.2 Fluctuations

A first order approximation for the correlation functions at £ = 0 shows that the results are
equal to those of approximation of Eq.(2.31]) with a different prefactor, so that for 7 > 1
2h

nr?

¢ —

logw.r 7> 1/w, (2.53)

The numerical solution of this equation is done with a procedure similar to that in section
2.5l In this case a set of noise terms are created for each realization in the sum over n with

the following results

2.7 Perturbation for the quantum action

In order to have a perturbation expansion in the full action of Eq. one needs to
identify a Gaussian term Sy within the action, then a perturbation can be done for around
Sp. Similar to the classical case perturbation in the noise term is of interest, here we also
need to consider the non-Gaussian part of the retarded term in the action. A simplification

of the action can be done by the use of the retarded function expression

o = 0(t = )[md,By + ndy] (2.54)
R;tl, sin(gét) cos(gét/) sin(0y — 6;) = 6(t — t’)[métét + %sin(hét)ét]
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Figure 4: The correlation functions as a function of time (bold) and the perturbation (2.53))
(thin) for r = 10 , x = —1,-0.5,0,0.5,1, E = 0, i/(mn) = 1072, The curves are from the
highest to the lowest for increasingly larger r.
with that the action becomes
Sk =i / mby6, + %sm(he})ét] + % / By Sin(gét) sin(gét/) cos(fy — 6,) (2.55)
t tt

It is useful to use the two-cutoff response as in Eq. (2.36) with R;' = —mw? + §R;', where

-1 _  —iwn
R = Tt hence

5R;t1’ — @t, / _—nefiw(tft’) _ _Eat/ [ef(t*t’)/‘l‘o@(t - tl)] _
b w T

1—iw7'0 0

L o=t=12/mQ (¢ — )9, (2.56)
7o
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for 7o — 0 we have 0R, 4 — nd(t — t')0y. This operator identity is satisfied for any function

decaying faster then e'!/™ at ' — —oco. Adding the external force E the action is then

Sk = So+ Simt + Se

Sy = i / 0,R 0y —iE / 0, =i / 0, R} 00,
t,t t t,t

2 . hs . ks
S’int — ﬁ \/t:t/ Bt,t’ 8111(5«975) 81n(§9t/) cos(&t/ — Qt)
2i h h B~
SC = —Z 5Rt_t1/ [Sin(—@t) COS(—Qt/) sin(@t/ - Qt) — _etet’] (257)
b Jiw ’ 2 2 9

for 7o — 0 S, reduces back to % ft[sin(hét) —16,)6,- as in Eq. 1) where ¢~ in the last line is
infinitesimal below ¢ so that the retarded nature of R; tl/ is maintained. For example averaging
over perturbation, which are the non-connected terms has to vanish (S,) sy ~ Bi=o- =0, this

is a crucial point for the perturbation expansion in the following. The bare Green’s function

is now as in the classical perturbation of Eq. (2.19).

2.7.1 Perturbations: 1st order

The retarded Green’s function for the first order in S;,; follows a similar procedure to that

of the classical case (appendix [A.1)

—2i /A . b ks
Rilt), = — <9t/9t / By, 1, sin(=6;) sin(=0y ) cos(0y, — (9t2)> =
h - 2 2 .
—2i oo’ ho 4 S L
= _aa aa B < 15 (@104 +020i+00t, +0' 0y )i (0t —912)>
h Z_ 94 T 2lo /t1 N tit \ € s
o0, u==+ ’
2 . h
=z By, 1, sm(ERtl,tQ)[Rtht/ — Ry, v| Ry, cosv(ty — ta) (2.58)
t1,t2

In frequency space the retarded Green’s function is the same as the classical with the re-
placement 2R, — sin(2R;)

22

(1) _
R =Ry |

h .
sin(iRt)Bt cosvt (e —1) (2.59)
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and the renormalized dissipation coefficient 1 up to first order is

1 , _ _ —iw 2 [ . h _
F = BL%(_M)RS) = }}ILI(I) i)t h /tsm(iRt)Bt cos vt (iwt) =
2 h [Ydt 2 h
7]_—77 sm(%) /wc 7 + O('U) = _7'('_77 sm(%) log 'U/CL)C -+ O(U) (260)

so at the semi-classical limit which is equivalent to large n limit we retrieve the previous

result (2.23)). First order perturbation in S, vanish

<ét/9tSc> = <ét/0tm / [Sin(ﬁét1> - hétl]ét_> =0 (261)
So h Y/ s

t1

since the Green’s function of the types (00) s, and <éé> vanish, i.e. the only possible

So

connected term is composed of multiplication of the Green’s function of the type <96’>

Expanding the sin in the expression the first order vanishes with the second term and the

expression is ~ <ét/0t9t; [—h?’éfl + %h5ét51 + ]>S separating the angular fields to pairs (Wick
0

extraction) it is clear that there exists no term without <éé> = 0. With the same reasoning
So

<ét/6tS§>S = 0. The mixed term <ét/6tSCS¢nt> does not vanish, but as S, contribute ~ A3

0 0

at least and S;,; ~ R this term is of O(h3) where our perturbation will only be to O(h?).

2.7.2 Perturbations: 2nd order

int

In section (B.1|) the second order perturbation Rg)/ = % <ét/9t52 > of the retarded Green’s
) SO

function and the dissipation parameter are derived,
1

i 0 / .
= — Bt it Bt it 6263€4A2 Sln[U(tl — tg) + ,lﬂ)(tg — t4)]
775% 2h4?72 (91) ei;i —— 1,t2-13,t4

h h
Ay = eXP{Z§€2(Rt1,tz + pRyy by — PRy 4,) + 2563(Rt1,t3 — Ry 4y — Ry 4y)} X

h
eXp{Z§€4<Rt1,t4 - th,t4 + uRt37t4)} (2'62)

we could not compute this expression with the retarded function R, = %(1 — e /™0 (1).

In general we have two high frequency cutoffs m/n, 7 in Eq. (2.36) and we assume that the
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resulting small frequency expression is independent of their ratio. The strict limit m — 0
leads to large oscillations at ¢t — 0 so we do not attempt this limit. We define a formal cutoff
time 71(m/n, 79) for R, and we first take the formal limit 74 — 0; we keep, however, the
cutoff 7y in B(w), Eq. 1} In this limit R, — %@(t)e*‘st where 6 — 07 to ensure the
retarded nature (poles of 1/(w + id)). With that we find (section [B.1]

1 1 2 h 4 h h

s = P R sin(%)[ln(m-o) + 1]+ —5 sin2(%) sin(;) - [In*(v7o) + 31In(v7p)] (2.63)
Here 1/nl is calculated in a formal limit 7; — 0. Note that the result is finite, and in

fact even 0,, at 7 — 0 is finite. Instead of the calculation of (2.62)) for 7 # 0 we consider

now the general structure for perturbations to 2nd order which has 3 terms: In terms for

both 1st and 2nd order terms, and In? only from the 2nd order,

1 _
77_R = — +a(n, 7ov, 71v) In[a(n, v, 7v)T00] + b(N, TOU, T1V) In? [b(n, Tov, T10)TOV]

+c(n, Tov, Tv) Infe(n, Tov, Tv) Tov] (2.64)

Note that 7 = 7 (m/n, 79) and 7 (m/n, 790 = 0) = m/n. We assume now cutoff universality,
i.e. one can take the limit of both 79, m/n — 0 with any fixed ratio without affecting the
result, however, the case 79 # 0, m/n — 0 is avoided as it leads to diverging oscillations in
. Note that 71 = 0, 79 # 0 is not realized by any 75, m/n, yet, we use the mathematical

fact that this limit is well defined. Hence we expand the a,b, ¢, a,b, ¢ functions in 7. Since

To — 0 is well defined, there are no terms ~ 2 in a, b, c and no ~ (:—(1))2

70

in @, b, é. We use the

known limit 7 = 0 to identify the coefficients

& = = al) iy + o)l + 1) +
b(n){In[1ov + ba(n)11v] + 31n[rov + E2(n)Tv] + 1}
al) = —>sin(2)
! w20
b(n) = % sinQ(%) sin(g) (2.65)
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In short, this form reproduces the known 7, = 0 limit, and also allows for a finite 77 consistent
with the general form of myv, v < 1. In particular there are no terms ~ In v when 75 # 0
since they diverge at 71 — 0. Now take the limit 79 = 0,77 = m/n of a single cutoff
1 1 m
—v

=y e {mE s

The ay(n), ba(n), c2(n) are shifts of the classical cutoff, thus they should not depend on the

m
—v

] + 1} + b(n){In* b2 (n) ;

m
—v

] + 31n[cy(n) . ]+1}  (2.66)

quantum %/n, hence these are constants. Another way to see this, is by nR(%v =1)=mnso

that

Inay(n)+1<1

In?by(n) +3Iné(n) +1 <1 (2.67)
n™ is up to In accuracy, so matching at vm/n = 1 can miss a O(1) terms. In fact 1st order
terms has In[as(n)] = —1 . Therefore

1 1 2 h m 4 h h m m
— = — — —sin(=) In[—v] + —= sin?(==) sin(=){In*[—v] + by In[—v 2.68
=y s ] s () sin(O{I 2] 4 b e} (268

with by < 1.The main conclusion is that there is a new small parameter in the perturbation
series, sin(%). The perturbation is formally in R?*"~!B"™/p? ~ h"/n™*! for large n, but in the

present scheme R?"~! factors in front of the logarithmic term become periodic functions.

2.8 Renormalization Group treatment

We performed in section ([2.7)) a perturbative expansion of the action with respect to Si, Se

n+1 The perturbative expansion of nf

to compute n*. The small 1/n form of each term is 1/n
exhibits logarithmic divergences when E — 0, thus the velocity v = E/n provides a natural
low frequency cutoff for this divergences, and the mass provides a high frequency cutoff at
we. = n/M, or alternatively 7y provide this cutoff. The expansion terms can be classified as
n-loops RG expansion if they satisfy the Lie’s equation [37]

d d

mgp”(v/wc,g) = dl—nggR(f,gR(v/wc,g))\@l (2.69)

26



The renormalization procedure consists of a rescaling of the frequency cutoff v. The high
frequency cutoff w, is replaced by v as the frequencies in the range w,. to v have been integrated
out to produce the effective dissipation parameter n(v). nfi(v) is the only parameter that

is renormalized in the procedure, its bare value corresponds to n = nft(w,).

In the limit of large 1 which is the same as the semiclassical result of Eq. ([2.25)), we can

express Eq. (2.68]) in terms of the small parameter g = W_r; and gr = and obtain

A
i (E)

g% =g —¢*Infv/w] + ¢ {1n2[v/wc] + by ln[v/wc]} (2.70)

This satisfy Lie’s equation. A direct way to see that is to define the § function in two ways,

via a derivative at In = 0 with g — ¢%

= (9")? = bo(¢") = (9 — ¢’ In(v/w.))* — bog® + O(g") (2.71)

and the other way is a direct derivative of (2.70))

dg" 2 3
0= =9 Y (2Inv/w. + bo) (2.72)

and check that the two results coincide.

For the quantum theory, beyond large n we find, due to the periodicity of the action in
the angle variables, that the R?*~! factors in front of the logarithmic terms have become a
periodic functions. We note that in 1} g= % sin % acts as an unexpected small parameter
for the expansion. Since all divergences vanish when g = 0 it raises the interesting possibility

that ¢ = 0 be viewed as a RG fixed point. For that we need to find a renormalized coupling

which obeys multiplicative RG, the simplest choice being g% = %sin 277% The question is
then whether all In terms of the S-function 3 = —Edgg® can be written in terms of g'.

Although the non-periodic 1/7 factor in (2.68]) appears at first problematic, we propose that
resummation from higher loops, which allows for higher order terms O(#) changes the 1-

loop term in l} by % — sin %, so that by taking a sine of both sides it yields to order
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h h 2 h h v

sin o F = sin% - sin2(%) cos(%) hl[aTc] +
4
= sin? % cos? %{lnz[%] + bo ln[%]} (2.73)

with the above definition for g, near g = 0 fixed points
g =g+ ¢*In(v/w,) + ¢*[In?(v/w,) + bo In(v/w,)] (2.74)

where =+ refers to g = 0 with cos ; = £1. Therefore 5(¢") = F(g")* — bo(9")* + O((4")*).

2.8.1 Alternative response functions

To further motivate the last proposal we consider the response function RW = z% <0t sin(%ét/)>.
Physically, et 50y corresponds to an electric field pulse 0E(t) = £4(t — t') or equivalently a
rapid change of flux by £, therefore Ry corresponds to the difference in response to these
two flux pulses. For R, the 1-loop term is fully periodic with % — sin(%) as in Eq. 1}

We note that there are many other operators that have vanishing perturbations at g = 0

to 2nd order in Sj,;, S.. E.g we can define an effective n* using the dissipation term in Eq.

2.57)) for which the relevant response function is <0t sin(hét/)>. Another option is to consider

the response to an ac field that rotates in resonance with the particle, i.e. E,.(sinvt, — cosvt),

in addition to the DC field E. The Hamiltonian is then

Hoe = Eue{sinvt cos[vt 4+ 660(t)] — cos vt sin[vt + d0(t)]} = — Eqesin 06(t) (2.75)
and the Keldysh action S,. = E,.[sind0" () — sind6~ ()] = 2E,. cos §6; sin gét and the re-
sponse function is

ov . = = . . hj
9B, = t—ltl’r—r>loo Ry = Ry = 2i(0; cos 00y sin §9t/> (2.76)

In both cases one can compute an RG equation as in Eq. (2.74). With the above reasoning

we suggest that g = 0 are exact zeroes of the perturbation expansion and requiring an RG

structure leads then to the result (2.74)).
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Eq. 1) yields fixed points at 217% =nm withn = 1,2, 3, ... that are attractive at n > 7,
and repulsive at n < n,, i.e. the flow of n # n,, is always to smaller n. However at these fixed

points a Gaussian evaluation yields the correlation for large ¢

—e
2

: . - )7

Ct o OBt — =20, (2.77)

D=

(cos 0y cos by) =

Figure 5: The flow diagram for n. For n > n. = h/(2m) the dissipation parameter flows to 7..

There is a theorem for the lattice model [38] where the equilibrium action with mass
related cutoff is replaced by an action on a lattice resulting in an XY model with long
range interactions. The theorem states [38] that (cos; cosfy) ~ 1/t%; this result was also
derived in first order in n [10, II]. The range n > n; has an RG flow to n; and is therefore
consistent with the theorem. The hypothesis of Gaussian fixed points corresponding to n > 2
is inconsistent with the theorem, i.e. (cos 8, cosfy) becomes a relevant operator at the n < 2
points rendering them unstable. For n < 7; the system may have non-gaussian fixed points

or a line of fixed points as hinted by the small 5 perturbation [10], [11].

2.9 Conclusions

We conclude that for n > n; = n* the SEB satisfies the quantization

L C2(N, h
0 7

In particular, when n/h > 1 we have from the known M*/M ~ ™/ [7HI1] and from Eq.
(2.8) that Cy/C, = 1+ O(e™™/"). We expect R, to be independent of Ny at large 7, hence

R, = 6—’2[1 +O(e ™M) (2.79)
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similar to the N, = 1 case [5].

The conductance for the ring can be defined by the voltage around the ring 27 FE /e and
the current e(d) /2w, hence we expect the conductance for n > n to be:

e? e?

Gring = ——— = — | 2.80
g 47T2nR h ( )

In section 5| we propose an experiment to verify this result.

2.9.1 Intuitive argument for the quantization

The special value n®* = h/(27) has a topological interpretation as a Thouless charge pump
[39]. Consider a slow change of ¢, by one unit with i, = nR(9>. For this special value
n™ = I/(27) the total change in the position of the particle [ (f)dt = 2, i.e. the particle
comes back to the same position on the ring and a unit charge has been transported. Such
quantization has been shown for cases where the spectrum has a gap [39], though quantized
charge transport was shown also in cases without a gap [40, 41]. The quantized n’ also

results from arguing that there should be a unique frequency wgy = v as £ — 0, as suggested

by linear response.
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3 Equilibrium study of particle dissipation

In this section we study a particle on ring in equilibrium in the presence of a dissipative
CL environment and derive the effective dissipation parameter n'* dependence on the bare n
parameter, on the external flux ¢, and on the temperature.

Our aim is to calculate the particle equilibrium Green’s function K, = <|9w]2>. Following

section [2.2| we define the low frequency expansion terms of K,
K, = Ko(¢s) + |w| K1(¢s) + O(w?) (3.1)

The first order is the effective mass Ky(¢,) = h/M*(¢,) and we have seen that by taking
an average over the flux this term vanishes fol Ko(¢y)do, = 0. The interest is in the second
term h/nft = fol K;(¢y)do,, for which in section we found its normalization dependence
on the bare 1/n parameter. We also expect that the important contribution for the effective
dissipation term is around the degeneracy point ¢, = 1/2.

In this section we use the Equilibrium Matsubara formalism to calculate K, (¢,) with
two types of perturbation schemes as well as by numerical MC methods, with the aim of
identifying K (¢,) in order to identify the quantization of the noise described in the previous
section, Eq. (2.7). We expect that for sufficiently low temperatures the flux integrated linear
response fol K;(¢,) will be universal for any value of n > i/(27).

In section we define the action model for the system and the Green’s function, in
section we calculate the Green’s function perturbatively up to first order for both small
and large dissipation parameter. In section we extend the perturbative calculation for
finite 7" and taking into consideration all windings.

We wish to solve this model numerically using the MC methods with the aim to identify
numerically Ki(¢,). In section we describe the numerical MC method used to solve the
model, and our chosen implementation of the numerics, and its limitation. In we show

and discuss the MC result and its limitation.
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3.1 Model action

The time dependent angular position o™ of a particle on a ring has in general a winding m
to describe the number of times the particle encircles the ring so that ol — 0.+ 2mm7T,
where 6y = 6,7 has a periodic boundary condition. In presence of external flux ¢, (in units

of flux quantum hc/e) the partition sum has the form

Z = Ze%im@” /D[@]e_SW)[G] (3.2)

With the action describing a CL environment

1T Q(m) _ 9(7”)
= —M/ (m) dT—Q/ / Grr SiD TTT (3.3)

«

_em)

.
2 sin? 7Tt

where o« = n/m with our previous 1 (a notation is conventional here).

3.2 Perturbation scheme

Here we will consider a general perturbation scheme for any partition function Z = fD[G] e,
with action S = Sy + S where
So= = 3G AP (3.4)
0 2/8 - w w .

is a Gaussian action and G, = w?K, is zero order Matsubara Green’s function. Expanding

in S;,:, the Green’s function up to first order in the interaction parameter is

o _ Jow 1% Fem (1~ Sim)
“ fD[e} _So(l_smt)

fp[e] e (‘9w|2 — G.) Sint
fp[e] e~

G, — O(Sint)? (3.5)
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We used here fD[e} |0w|2e750/fp[0] e = (G,. The second term in the numerator is the

disconnected term. It is convenient to derive this expression by derivation with G,

-5y Q.
(1) — _Qi (Sint) s = —2 0 fD[e}e 0 Sint _
“ G, ° Gy Jpig e
_ 2 _
_G_zfp[e]e 501001 Sint G_pr[e]e HGSint (3.6)
fp[a] e % fp[e] e 5
Where the first order Green’s function is
GV =@, +G2xW (3.7)

In the following subsections we calculate the Green’s function perturbation for the first
sector m = 0 with ¢, = 0 and for T = 0 for large . We use here the convention for the
Matsubara integralas [ =T —and [ = foﬂ dr, for T = 0 the integrals are [ = 5= [* dw
and [ = [7 dr.

3.2.1 Large a perturbation

To have perturbation in large a@ we add and subtract a dissipative term to Sy and Sj.;
respectively. The dissipation term is chosen such that in the limit of large « (which is
equivalent to the large w) the Sj,; term vanished. Here we only consider the zero winding
section m = 0 and assume the result is flux independent, in section this is justified

numerically. The action is

2

2
Sint = —2/ Grat (sin2 (97 _2 97/) — (‘97 _2 97/) ) (3.8)

The bare Green’s function is G, = Mw? + 7o |w|. The first term in S;,; is

6, — 6,
<Smt>50 - _2/ grr <Sin2 ( 2 )> N _/ gT,T’(l - eGT’T/_GTZO) =
7,7’ So 7,7/

) )

/gTe— [, (1—coswT)Gy (39)

So = 1/ [Me? + ma fw]] 16,2
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The second term in the perturbation is a Gaussian term with (Si,) = —a5 [ |w| <|9w|2>0 =

—aZ [ n|w|G,. Hence to 1st order

50— 9 9

e ETen (Sint)g, = 2 /(1 — COSWT)gre” JoQmcoswn)Go 4 7y |w]

,
1 —coswr — [, isgose'r
= —a/—ze Jor St el + 7 |wl (3.10)
T
T

The integral in the exponent with w, = n/M

1-— 1
Vi JCrO;ZITwI = o= [7 + log(Tw,) — sin(rw,)Si(Tw.) — cos(Tw,)Ci(Tw.) + g sin(Twc)] =

1 1
[ e o] e .

For small frequencies we can take large time terms in the exponent

1— - o
Ziw) = —a [ ST () e = —ag, o]
2 sin e al(—1 ! )>0 for a>1/n° (3.12)
= 1 —_— T — —_— —— T .
Ba 2T 2o

for a < 1/7? this integral diverges for short times (this divergent is not real, for short time

Y

the exponent is , meaning there is no short times divergence). The first order Green’s

function for a > 1/72

1 1+1/m%a gl/ﬂ'QO‘
G = 5 _ o8 d 5 + T ] 5 (3.13)
Mw? + Ta|w| [Mw? 4+ 7o |w] (Mw? 4+ 7o |w|]
expansion in large a gu |w/w|/™® = 7 — (1 — log 2)/(ra) + O(a™?)
G — N Ul e 3.14
Mw? + 7o |w| T [Mw? + mo|wl|] (314
identify o by lim,_owG;(w)
1 1 1 w
— =— 1 —log — 3.15
af o et le ) (3.15)
The RG equation which was derived at [42]
d1/G
We) L1 4 (3.16)
dlogw a?
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3.3 Small o perturbation

In the previous section we considered only the zero sector m = 0, and ¢, = 0, for large «.
The small « perturbation can be solved for all winding and in finite ¢,. The action (3.4) can

be written as

1 T 1T
S = 2M / 02dr + 27T Mm? + / / 9" cos (6, — 6,1) drdr’ (3.17)
0 0
with ggm) = g, cos(2rm7T). In this expression we used the symmetry between 6, and 6, in

the [ DI[f] integral. The action

) _ 1/T (m) _ /
/D —So E e 2m2T Mm? +2Trz¢zm 9, , cos(0r—0_s)drdr (318)

S():—M/ deT
2 0

First order perturbation in a where the bare Green’s function is G, = 1/Mw? and in time

domain G, = |7| /2M.

:/ e—So Ze—QﬂTMm2+2i7rm¢z [ // 7— ,COS 9 o 9 )deT/ (319>
D[0] m

The first order perturbation of the Green’s function

Zm o—2m2 T Mm?+2irmas f’D[@} oS0 fm/ gin_”t)ﬂ cos (97 . QT/) [Gw . |9w’2}

aW =qa, A
w + Zm e—27r2TMm2+217rm¢w wa e—50 6]
—27r2TMm2+2i7rm¢w Z(m)
22 m € w
G + G Z e—27r2TMm2+227rm¢x (320)
where E&m) is similar to the previous section where the bare Green’s function is
1/2T
»(m — 2/ (1 — coswr) cos(2rmrT)gre™ Jolmcosen)CGo g (3.21)
—1/2T

We solve this integral considering the finite temperature. In Matsubara formalism the

integral for finite 1" turn to the summation fw Jo=T 7" fu., with wy = 27kT. The sum
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in the exponent

T 1—cos2nTtk T 1 —cos2nTtk T
T2 Guanll — coswn) = 5 kgo TR M ; 4T oM

T T 5 9
M//TQ?T(S(QWTT) ayville |7| /2M —T1°/2M (3.22)

The expression for the first order perturbation

Wik 2

1/27 272
»m — —2a/ dr——5—— cos 2rm7T (1 — cos wyT)e "=/ (2M)
0 sin® 1T

—2m2 T Mm2+2inmey E(m)

1) 2 Zm We 2 1
GE%) = G, + G% > e—2m2TMm2+2irme, G, + ka Za(u;c) (3.23)

The Poisson summation formula Y>> g(m) = [T >7%__ e*™Kdgp

> o 2m2T Mm? 4 2imma, cos(2rmrT) 1 Z Sk f¢ e2mi¢K =212 T M2 +2imps cos(2mo7T)
p— 5 =

—2m2TMm2+2inp,m 2mip K n—2m2T M ¢p24-2im
2 m© : = Dx JyePmioKe o0

_ (KtéotorT)? _(Kida)?
Z Sge gz yce i cosh(r(K + ¢.)/M) 3.24
(K+¢z)2 (B+62)? ( . )

o ZK € 2TM ZK e 2TM

Notice that e ™" 7/M) cancel out.

2
V2T 272 o~ ST e 7 (3K +od:)
ES}C) = —2a/ 7;—(1 — COS WkT) 2Kt o (3.25)
0 sin® 7T 9 ZK o QT"]’\;

3.3.1 0<¢,<1/2
For the limit 7' — 0 the dominant term for this fluxis K =0

»b = 204/21T ﬂ(l — cos 2nkTT)e? cosh s _ —2a i + O(wy) (3.26)

“h o sin?aTr 2M 1 —4¢2 kJ A

This means that the perturbative correction does not create a dissipative term, only a correc-
tion to the mass. For ¢, = 0 the result is as that found for m = 0 in the previous subsection.

We can also see that for large wy X(wg) = ma |wy| as expected.
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3.3.2 ¢, =1/2

For ¢, = 1/2 the contribution from K = 0, —1 terms are the dominant ones. Their contri-

bution is the same

32
ZK e_ (Kggjjb\}) (e M ( +K+¢w) _|_ &} ]u ( -K-— ¢:c))

(K+¢z)?

2y 0 H
With that the self energy expression is

1/2T T)2 1/2T
nl) — _Q/ &(1 — COSW)T) = / g-(1 — coswyT) =

Wi 202
2 ) _ijopsin” 7T 1/2T

_ % L Oe /M) (3.27)

v
g"-’k:O - gwk = _gwk = —OZE |Wk;| (328)

The perturbative Green’s function is

(1) o 1 _l_ El(Wk)

1 2
Gi}k) = ka + ka Zwk o Mw;% MQUJg

(3.29)

2&),% ¢ =0
Z&) = —a 1__i¢gwl% 0< ¢, <1/2  + higher order of wy

7wkl ¢ =1/2
This perturbation does not show the expected result, by which we expected G, to have a
dissipative term after averaging over the flux 1/nk Mg, = fo (¢,)dp,.. We do find a dissipative
term at flux half as expected but this term has zero weight upon averaging over flux.
We expect K, = wika = Ko(¢s) + |wk| K1(¢,). Hence the dissipative form is obtained
only at ¢, = % with K = . The singularity implies K; ~ §(¢, — ) in fact by resummation
of the small « perturbatlon [27] found that Ky ~ T(¢, — %) at T — 0, i.e. a renormalized

nft~T —0

3.4 Monte Carlo (MC) simulation

In this subsection we describe the numerical method used to solve the action . This model

was studied intensively using MC algorithm focusing on the effective mass [9, 19l 20], but
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no work has been done to calculate the effective a. It should be noted that for the related
problem of particle in periodic potential an effective dissipation was calculated using MC

simulations [43], 44], where it is well known that at o, = 1/(272) there is a phase transition

R R

between a dissipative regime (o' — «) for @ < a, and a localized regime (o — o0) for

a > a, [16, 145)].

3.4.1 Model

We solve the model where the Matsubara partition function for particle on a ring in CL

environment is

o0

7 — 62ﬂ2m2MT+27Tim¢z/ efS(m) (330)
2 -
1 YT 1T
S = MR / 62dr + / / g™, cos (6, — 0,.)
0 0
m QT
gﬁ;k) -1 (|wrtml| + [wWk—m])
o0 2
m) _ mygiror — @ (@) o 0
gy kzz_oo 9u,e 5 T r cos(2rmT'T) T #
m is the winding number. The g.—o term has a positive divergence so that g,,,_, = 01/ T gr = 0.
We wish to calculate numerically the Green’s function
K, = <e‘§m>e'$’3> - <9‘te;+t> +472T2((m?) — (m)?) (3.31)
with o™ = 0. + 2mmT'7, or alternatively in frequency space
. 1
K., = Twi{|0.,]%) + 4T ((m?) — (m)*)5(wi) = Cup + ~——0k0 (3.32)

M*
With T0(wy) = 6. The first term K (wy) is the correlation for k # 0. The second term is

the curvature.

1 PF T(’92logZ
M+ 9¢2 093,

= 47T ((m?) — (m)?) (3.33)



3.4.2 Time discretization of the action

The numerical realization of the action requires discretization of the action by dividing the
time integral to N trotter segments with A7 = 1/(T'N). Then 7 = A7j, j =0,1,..N — 1.
the variable 0 is the time discretization of ;. Equivalently in frequency domain the number
of modes wy, is N where w, = 27kT and k an integer £k =0,1,...N — 1.

For numerical time considerations it is more suitable to work with an action written in
Fourier space. Realization of the action in the time domain requires a computation time of
O(N?), where realization in frequency space requires numerical time of O(N log N).

The Conventions of Fast Fourier algorithm are that the terms & > N/2 are considered
instead of negative frequencies. 6; is real means 0, = 03 _,. The frequencies are wy, = 27Tk
for k < N/2 and for k > N/2 w, = wy_x, so the action is symmetric. Note that 0x—o does

not contribute to the action.

= TMAT
S(m) _ SO + Sém) _ TATZ |: wi |9kz|2 _}_g’(gm) W)k'? (334)
k=0

Where g,(cm) the discretize version of g,

jwr| = 27T |k |wi| > wm]

T
g,im) = EO[AT X (3.35)
|wm| = 27T |m|  |wg| < |wpn|
The partition function is
oo
7 — o BF — oM X wRloAr? Z o 2m*m* MT (—2mimey o ~TAT 3, N ION (3.36)
m=—oo
We use here the Fast Fourier conventions for discrete transformation
N-1 | N .
Op=) ¢N0; 1 0= ) N0, (3.37)
j=0 k=0

Setting A7/M = 1/(T'NM) as the dimensionless time unit. For convenience we choose

M =1 in all simulations, which left us with three free parameters in the model, o, N and T.
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3.4.3 Green’s function
We are interested in the velocity velocity Green’s function of Eq. (3.31))
K, = <9 m)97+t> - <0‘t0}+t> + 4722 ((m?) — (m)?) (3.38)

Where (-) is understood as an average over both the action and over the time domain ¢. The
Green’s function for the periodic part in is C. = <9t97+t>. This function in frequency space

is found by the Wiener-Khinchin theorem, where 6, is the Fourier Transform of 6,

Cw - /CreiWT = /eiWT/ <éw19wz> e_iwlt_iw2(7—_t) =
T T w1,w2
A . . . A )
A / / i / (s et = 52 (19 1) (3.39)
™ tJT w1,w2 27‘(’

with the time span 1/7, Aw = 27T and we get C, = T< )

2
>. In discrete form the time

correlation function is Cj, ;, = <9j19j2>, C is the Green’s function in discrete frequency

form, with the Wiener-Khinchin theorem it is

N-1
gk ik L o -J1k1 U1 J)kz
Ck _ E Cje27n _ N2 2 eZTrz E <9k10k2> 2= N —2mq —
Jj=0

k1,k2

1 jk okl i G120k 1 -2
RN Z<6k19k2> o = 4 (o

k1,k2

> (3.40)

where 6, is the discrete Fourier Transform of 6; = (8;41 — 0;)/Ar. The continuum 6,, and

the discrete 6y, are related by
6, = / beim = AT S 66 = Ardy (3.41)

and the Green’s functions are related by

C, = T< ), 2> — TAP <‘9,€‘2> - % <‘9k‘ > — ATC), (3.42)
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The full correlation functions, including also the winding part of Eq. (3.31])
. 2 2
K, = T< > + 47T ((m*) — (m)?)opo = T< > + 47T ((m?) — (m)*)é(w)
~ (m 1 -2 T
KW=+ <\9k\ > + 4P ((m?) — (m)*)oko (3-43)

with 6;_o = 0 due to the periodicity, and dpo =T(w).

0.s

O

3.4.4 Monte Carlo (MC) Algorithm

In this section we outline the numerical algorithm used to calculate an expectation value
Q@ = (Q)g where the average is done with respect to an action .S, the partition function is
Z = [ Dix]e"¥ and x are action variables.

The MC algorithm goes as follows [46]: one starts with an arbitrary values for the
variables x, and runs a long series of steps of a Markov chain. In this chain of steps one
moves between different states of the variables x so as to approach equilibrium. In any
state state p of the system the expectation value @), is calculated, the final result for the
expectation value is () = ﬁ Zf‘il (),,, where M is the number of states average over.

In order for the system to approach equilibrium and remain there two conditions are
imposed on the transition probability between states. The first is ergodicity, the requirement
that the Markov process can reach any state from any other state. The second is detailed
balance that requires the ratio between P,_,,, the probability for a transition between state

p and state v, and P,_,, the probability for a transition between state v and state p, to equal

the ratio between the probability to be in state v (or the weight of state ) which is =5k
to the probability to be in state u, explicitly
Busv _ (sbel-sTxul) (3.44)

P,
The probability P,_., for transition between states is composed of two terms, a selection
probability that g,_., is the probability the 4 — v move is suggested, and an acceptance
probability A,_,,. The transition probability is then P, ., = g, A,—..
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3.4.5 Metropolis algorithm

There are several possible choices for P,_,, that obey the ratio of Eq. . The Metropolis
algorithm is a commonly used choice, in a standard Metropolis algorithm the MC step changes
the state p — v by taking in each step a random index j € [1, N] and a suggests update
0; — 0; £ 60; with probability g,—., = 1. Then the update is accepted with the transition
probability

| 5 e~ (Shxv]=S[xp]) Slx,] — S[XM] >0 (3.45)
. v 1 otherwise . |

and the suggested update amplitude 66; is determined dynamically in the simulation to
produce an acceptance ratio of 1/2. For the partition function in our model we define an

effective action that contains all windings

o0

7= 3 ermntimme [ppges < [ plglesit, (3.46)

Following an idea from [43] our algorithm is the following. In each numerical step we create

a set of 05 using the selection probability

G = &S] — AT S M (3.47)

Meaning we choose random set of 6, k = 1,2..N/2 taken from an exponential distribution
with mean 2/(TAT?Mw?) and a uniform random phase and 6y_, = 6;. The acceptance
probability is taken as in the Metropolis algorithm excluding the Gaussian kinetic mass

term,

} : —2m2m2MT+2mime —S(m)[e ]
e o a 1%

J— 1 m

A,y =min |1,

2m2m2 MT+2ri s{mie (3.48)
me_ 2m + ﬂzmqbze— o [0v]

so that Eq. (3.44) is satisfied.
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3.4.6 The sign problem

A problem arises here since the Metropolice algorithm requires the weights e=%#sl% to be

—27r2m2MT+27rim¢ze—ng)[Gu] can be

non-negative. In our model the winding summation ) e
negative for ¢, # 0. In particular near ¢, = 1/2 the alternating sign means that the number
of states with negative weight approaches the number of states with positive weight as the
temperature decreases. This is due to the factor g 2mmiM T where for large T the contribution
to the summation is restricted to the m = 0 sector but as the temperature decreases more

winding sectors contribute to the value of Z.

A standard method [47] to calculate an expectation value ) when the weight P can be
negative is to replace the calculation of the values ), with respect to weights P, by the
values of Q,S, |P,|'™" with respect to the weights |P,|* where S, is the sign of P,. Then

the expectation value of (@) is for any real &

3, Sl Pul' ™" Pul"Qu

(Q), = 2 Pu _ > S (Bl ™" [P]" Q, _ 2 plBul” _ (S~ Q)ppr (3.49)
g ZMPM Zu SM‘PMIPH‘PM’H Z“Sgpﬁt}';:lp”lm <S>|P|’“

This method solves the issue of negative weights but a different problem, the infamous ’sign
problem’; arises. In our simulation we use the conventional scheme with x = 1 where the
average sign (S >‘ Pl decreases exponentially with the numerical size N or equivalently with
1/T [47] which means that the standard deviation of the expression increases exponentially

as N increases, making the numerical results unreliable for large N values.

3.4.7 Effective Mass
The zero frequency term Kj_q = o = 4m? L ((m?) — (m)?) defines the effective mass of the

particle and is found by calculating the winding distribution Z,, during the simulation.
1 S m*Z S mZp \’
42T 2\ _ 2y AT m mo_ m m
L) - ) = 1 (Zmzm (Zol)

—272m2 —omi _T (M) b 12 Ar2
Zm —e 2m4m MTe 27rz¢zme 5 2 Tolwi [V |[Yg[TAT (350)
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Note that second term (m) is imaginary duo to the €2™%™ in Z, hence the — (m)* term is
positive. The first term (m?) can be either negative or positive, it reduces as ¢, approaches
1/2. Note that for some values of ¢, the term 1/M*(¢,) must be negative as the integral
. 1 1 o
over the flux is fo mdgbx = 0.
The effective mass was calculated in numerous works in the past for this model and for

other related models [9] 19} 20]. An exponential decay of 1/M*(¢, = 0) as « increases is well
established.

3.5 Numerical results and discussion

In Fig.@ the MC data for K, for the three values N = 100,200,400 and o = 1/(27?) are
presented as well as for N = 100 and o = 5. Dots are the data for fluxes ¢, = 0,0.2,0.4,0.5
(Blue, Green, Red, Cyan) green lines are the small o perturbation from Eq. (3.25). The
red line is the first order large o perturbation of Eq. . The zero frequency (k = 0)
data points for 1/M*(¢,) are seen only for the small flux data, for larger flux data their
value is out of the figure range. The numerical results show that for small N (high T") we
get the perturbative results for both small and large values of a. However for the small «
value (upper and lower left figures) as we lower the temperature (increase N), the result
for large flux become unreliable and the data becomes flux independent. This result is
probably caused by the numerical sign problem. We would expect that for large N values
the correlation function, especially close to the degeneracy point of ¢, = 3, will become
linear for small frequencies. That linearity, should we be able to achieve it for a low enough
temperature, would define the effective dissipation value o, its ¢, integration would give
n®, the subject of our work.

The bottom right figure demonstrates that for large o values the results are flux inde-

pendent and fits the perturbation of Eq. (3.13)
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Figure 6: Upper left panel: MC data for N = 100 with a = 1/(27%) A7 = 1/2. Upper
right panel: MC data N = 200 with the same parameter set. Lower left panel: MC data
for N = 400 with the same parameter set. Lower right panel: MC data N = 100 with

a = 5. All data points fall on the same curve, meaning the data is flux independent.
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4 Winding of planar gaussian processes

Motivated by our study of quantum noise in a ring geometry in this section we study the
behavior of a general correlated noise (or process) in a two dimensional plane. The focus is
the study of the angle ¢; of the noise & = &7 +i&! = |&] 't and its relation to the correlation

Ci v of the &’s. The work in this section was published in [I].

4.1 Introduction and model

The winding of planar random processes has been studied for a while. These are of interest for
the physics of polymers [48-51], flux lines in superconductors [52] [53] and quantum Hall effect
[54, 55]. Recently there was revived interest in winding properties of processes described by
Schramm-Loewner Evolutions (SLE) [56, [57], such as the loop erased random walk [58].
The aim of this section is to study the winding of a very general continuous-time gaussian
process & = & + & in the complex plane with arbitrary correlations in time. The only
restriction, mainly to avoid cumbersome formula, is that the measure is rotationally invariant
around the origin 0 and the winding angle ¢, is measured around point 0, i.e. & = r,e't
where ¢, is a continuous real function of time and r; = |&|. The process is thus centered

(&) = 0 and fully characterized by its two-time correlation function:
(&€)) = 0 Crw (4.1)

with i, 7 = z,y, equivalently (£,&y) = 0 and (/&) = 2Cy. The most general form would be
(& &) = 2(C + 1Ay ) but we also assume reflection symmetry which forbids the antisym-
metric term €;; Ay in ‘) with €19 = —€p1 = 1. We use the notation ¢,y = Ciy //CyCpryr
with ¢;; = 1 and from Cauchy-Schwartz inequalities || < 1. Some particular cases are (i)
stationary process Cy = C(t —t') and one defines ¢y = ¢(t) = C(t)/C(0) (ii) process with
stationary increments C’t(tl,’l) = 010y Cyp = Cy(t — t') (here and below we adopt the following

definition for partial derivatives 0,Cy = C’ftl,’o) etc..). Normalizability of the Gaussian mea-
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sure requires that these functions have positive Fourier transforms &(w) > 0 and Cy(w) > 0.
We restrict to a process which everywhere below we call ”smooth”, meaning - by definition
here - &, differentiable at least once, i.e. C") exists (equal —C"(0) for a stationary process).
For such a smooth process, (£/¢/) = C’t(tl’o) = C’t(l? D= %@C’tt, which vanishes if furthermore
the process is stationary.

This model corresponds to our Langevin equation (2.33|) with £ = 0 where the correlation

matrix is that of quantum CL noise C'(w) = w coth(hw/2T) (here we use the short time cutoff

7o in the form C(w) = |wle ™M ie C(7) = %%) and in the limit n — 0 (and m — 0).
0

mét + Uét =& cosb; + & sinfy = — |&| sin(6; — ¢y)

sin(y —¢;) =0 ifn—0 (4.2)

Then the angle 6, is pinned to the noise phase ¢;, which is being studied now. We have
seen that the Langevin description is valid only at large 7, hence the present study does not
correspond to our quantum case. Yet it has its own relevance as mentioned above.

The outline of the section is as follows. In section[d.2]we study single time quantities. The
distribution of angular velocity is obtained. In section we study the periodized winding
probability distribution which is easier than the full one. The correlations of exp(ing;) are
obtained analytically for integer n, and studied numerically also for non-integer n. In Section
4.4 we obtain a closed formula for the variance of the winding angle as a function of the matrix
Cy. We show that for most stationary processes the winding angle exhibits diffusion at large
time and we obtain the diffusion coefficient, we also study non-stationary processes.Finally in

Section [4.5] the variance of the algebraic area is obtained. Most results are tested numerically.

4.2 Single time quantities
Single time quantities are easily extracted from the Gaussian distribution ~ d2§te*‘&|2/ (2Cu)

performing change of variables. Everywhere below we consider d?¢ = déd&* = d&®dgY.
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The modulus is distributed as P(ry)dr; with P(r) = CL“G”"Q/ (2Cu)  hence the probabil-
ity to be within 7, < € near the center vanishes as ¢2/(2Cy). To compute the distri-
bution of the angular velocity ¢: one uses that X, = (&,&) is gaussian with measure
dzétTd;étdet(M)e_%X*MX and correlation matrix M~! = ((Ctt,C't(tl’O)), (C’t(f’l),C’t(tl’l))). Let us
denote ft = & with oy = 7 /1y +iqz5t. Here we have requested a smooth process. The measure
becomes %@P det(M)e~ 271" where 8 = (1, a;)M(1, o). Integration over & yields the

joint distribution P(py, ¢r)dpidey, with p, = Inry, equal to:

dpuds CuCi” (4.3)
T (O =205 p+ CulpF + 67))
Integration yields:
P(¢y)d¢y = dﬁf.)t—at- (4.4)
2(a; + ¢7)%?

with a; = (CuCY — (CEY)2)/C2 = 8,0, In|cw||y—. For a stationary process a, = a =
—"(0). For stationary increments a, = C5(0)/Cy — (9, In Cy,)?. Note that this distribution

is broad, it does have a first moment but no second moment i.e. (¢2) is infinite.

4.3 Periodized winding

Next one can compute two time correlations of the winding angle. The two time probability

measure of the process can be written:

rirpdridry dodoy ox (_ Cf/tﬂ"t2 + Cttrt% — 2Cwryry COS(¢t - ¢t/))
(277_)2Att/ p 2Att/

(4.5)

with Ay = CuCpy — C’ft, hence integration over r; and ry allows to obtain the probability
distribution of cos(¢; — ¢y). Equivalently this gives the probability of ¢ := ¢, — ¢ modulo
27, i.e it gives the periodized probability P(¢) = S5 P(¢ + 2mm) where P(¢) is the

m=—0o0

probability of the total winding ¢ €] — 0o,+00[.  The probability distribution allows to
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compute the correlation functions C,(t, ') = (e™(#=?")) for any integer n, for instance closed

expressions for C,(t,t') = F,(c;) as a function of the matrix Cy:

Fl(C) =

LB + (@~ DE()

Fafe) =1+ (5 — (1~ &), (4.6)
with F, K the respective elliptic integral functions. We have checked these results numerically
for several stationary processes where ¢, = ¢(7) = C(7)/C(0) where 7 =t —t'. The process
¢l was generated numerically using a discrete Fourier transform of /¢(w)NATA?, where N
the number of points is typically N = 216, A7 = .01 is the time segment in the process and
A is a unit white gaussian process. We computed C,(7) where the average (¢?) is over the
time range and over several realizations, typically 10. We plotted C,(7) parametrically as a
function of ¢(7) for various type of noises. Up to numerical accuracy all the curves fall on the
predicted master curve C,(7) = F,(¢(7)). When ¢(7) is non monotonous, the master curve

may be traced more than once. This is illustrated in the left panel of figure [7}

4.4 Variance of the total winding angle

The previous results are easy to derive, and are simple functions of ¢, but they do not
contain information about integer winding. They only probe ﬁ(gb), the periodized winding
angle distribution. An interesting question is how to access the full winding distribution
P(¢) and whether its dependence on the matrix Cyy remains tractable. It is a more difficult
question since to compute the full winding angle one must follow somehow the time evolution
of the process, e.g. use that ¢ = ¢, — Py = f; dos. A related difficult question, which requires
the full distribution P(¢), is to obtain the averages C,(t,t') = (e™@=#)) for non integern. It
is seen on the right panel of figure [7] that these are not simple functions, but rather unknown

and more complicated functionals, of ¢y .

We present the simplest result for this question, the variance of the winding angle. Here,
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Figure 7: Left panel: The correlation function C,(7) for n = 1 (top curve) and for n = 2

(bottom curve) as a function of ¢(7) for ¢(7) = (

H—Tg)Q (Blue curves) and the prediction

for Fi(c) and Fy(c) (Red curves). The inset shows how the curve is retraced for negative

values of c. Right panel: The correlation function C,(7) for n = % (three curves starting
on the top) 2 (three curves starting on the bottom) as a function of ¢(r) for three processes:
c(1) = exp —7%/2 (in blue), the ¢(7) used in left panel (in green), c(7) = (1 — 7%) exp —72%/2
(in red). Note that for each n the three curves remain very close for ¢ > 0.4 and that for

n = 5/4 all processes change sign.

for simplicity, and to avoid stochastic calculus subtleties, we restrict to a smooth, i.e. differ-

entiable process. We compute the two time angular velocity correlations

w1 =S+ el
Cults ) = (d6w) = (=) In(1 = )
tt/

1
—5(8t5’tr In | |) In(1 — c2)) (4.7)

where we recall that ¢,y = Cyy /+/CyCypy. The variance of the winding angle is then obtained

Dy = (1 — b0’ / dt, / dt2C, (11, 1) (4.8)

For stationary processes ¢y = c(7) = C(7)/C(0) with 7 = t — t". The angular velocity
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correlation becomes C,(t,t') = C,(t — t') with:

CU(T) _ %(CII(T)CéZi); CI(T> )ln(l . C(T)Q)
= 2@ Je(r)) (1~ (r)?) (49)

And the winding angle become @, = ®(t — t')

()

= Tsc )n—c7'2
@Q“)_2A‘jl—d@2+cu)1“ (1)?) (4.10)

For processes such that ¢(4+00) = 0 we find that the generic behavior is that the winding

angle diffuses at large time as ®(7) ~ 2D7 with a diffusion coefficient:
D:/M@J&f— (4.11)
0 1 —c(s)?
an integral which converges at small s values when the process is smooth since ¢/(0) = 0.

Examples of some of the non-generic situations where winding angle diffusion does not
occur is ¢(7) = Jo(7) for which is log-divergent at large s and one finds superdiffusion
®(7) ~ 27In7 at large 7. The above predictions are checked numerically in Fig. [§ in
the time variable 7, and as a parametric plot using c¢(7) in Fig. |§|, for the diffusive and
superdiffusive case.

We now study non-stationary processes, such processes often occur in the context of
aging or coarsening dynamics [59) 60]. In some cases these processes can be mapped onto a
stationary process using the property of reparametrization of time: if the process ¢, has a
winding angle ¢; then the process cy(;)4() has a winding angle ¢4 ;) for any positive monotonic
function g(t). Hence for processes of the form ¢y = ¢(g(t) —g(t')), the variance of the winding
angle is obtained as @y = ®(g(t)—g(t')) where ®(7) is the variance for the stationary process
é(7). Hence diffusion in ®(7) ~ 2D7 implies @y = 2(g(t) — g(t'))D. Among non-stationary
processes, processes with stationary increments are of special importance. One such process

is the fractional Brownian motion (FBM), Cyy = L(#%* + ()2 — |t — ¢/|*"), with 0 < h < 1.

1
2
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Figure 8: The angular velocity correlation function C,(7) as a function of 7 for the ¢(7) used
in Fig.1 (the blue curve with the stronger decay), and for ¢(7) = Jo(7) (the second blue
curve) together with the predictions of Eq. (red curves). In the inset the winding angle
variance ®(7), divided by 7, is displayed for the same two cases. From the top, the first
function (in blue) saturates to its diffusive value (red line), with D ~ 2.92 calculated from
Eq. . The second function (in blue) is compared with the superdiffusion prediction
®(7) = 27log T 4 0.9077 from Eq.. Both results are an average over 50 realizations

For h = 1/2 one recovers the standard Brownian motion (BM). The FBM with A > 1/2 is

smooth and the above mapping applies with the time change g(t) = Int
é(s) = cosh(hs) — 2%"1| sinh(s/2)|*" (4.12)

can be used, leading to diffusion for the winding angle in the variable g(t) = Int at large
times, i.e. ®y ~ 2D, In(t/t') where Dy, = [° & (s)?/(1 — é(s)?) diverges as h — 1/27. The
cases of the Brownian motion h = 1/2 require a different expression since we can only address

smooth processes, a general smooth process with stationary increments is

1

Cuo = 57 + () = (= 1), (4.13)

The choice f(t) ~ t at large ¢ corresponds to the BM. One possible choice for a smooth
process is f(t) =t —1+e~" ~ t?/2 at short times. Taking the large ¢ limit at fixed 7 = ¢ — 5
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Figure 9: Left panel: Parametric plot of the winding angle variance ®(7) (y-axis) and ¢()
(x-axis) for the ¢(7) used in Fig.1 (blue curves) and the linear diffusion formula ®(7) = 2Dt
with D ~ 2.92 as predicted from Eq. (in red). The inset shows the angular velocity
correlation function C,(7) as a function of ¢(7) for for the same choice of ¢(7) (blue curves)
and the results of Eq. (red curves). Right panel: Parametric plot of the winding
angle variance ®(7) as a function of ¢(7) for ¢(7) = Jy(7) (blue curves) and the asymptotic
prediction ®(7) = 27log7 + 0.9077 calculated from Eq. (19) (in red). In the inset the
correlation function C,(7) is shown as a function of ¢(7) for the same ¢(7) (blue curves),
together with the results of Eq. (red curves). Both results are an average over 50

realizations
we find
1
Py ~ 5(1n t)? (4.14)

and recover known behavior of the BM [61]. This was verified numerically in Fig. [10]

4.5 Algebraic area enclosed

Finally we can study the algebraic area A; enclosed by the process, which satisfies A, =

%(ﬁfff — §f§f) Its variance is C4(t,t') = (At/lt/). For a smooth stationary process one
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Figure 10: Left panel The variance of the winding angle &, for ¢ = 1 as a function
of ¢t for the random walk, i.e. Cy of Eq. with f(t) =t — 14 e * (bottom blue
curve) as compared to the asymptotic prediction of Eq. (corresponding red curve). The
correlation functions ®;y for ¢ = 1 as a function of ¢ for the FBM with A = 0.6 calculated
using the equivalent stationary process with the time reparametrization s — e’ (top
blue curve). The asymptotic diffusion prediction, @, = 2Dp,_¢ ¢ logt where Eq. gives
Dp—o¢ ~ 1.7 is also shown (top red curve). The results for the random walk required an
average over ~ 10° realizations. Inset:The ratio ®y/ In?¢ for the random walk, same data,
showing the convergence towards 1/2 as predicted in (4.14). Right panel: The variance
of the algebraic area ®4 = ([A; — Ay]?) with ¢ = 1 as defined above for : (i) the random
walk, i.e. Cyy as in Fig. |8 (blue curve on top at large time) and the asymptotic prediction
~ t?/4 (corresponding red curve) (ii) the result for the stationary process c(7) of the left
panel of figure [7| as a function of ¢ = 7 (bottom curve) and the asymptotic prediction 2D 4t
with D4 = 3m/8 (corresponding red curve). In the inset the ratio ®4/t* is plotted for the

random walk as a function of ¢, and shows saturation towards the predicted prefactor 1/4.
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finds Ca(r) = —3C"(7)C(7) + 5C’(7)?, and the diffusion result (A%(7)) ~ 2D 7 with Dy =
J" C’(s)*ds. For the random walk f(t) ~ t we find (A7) ~ t*/4 at large ¢. This is larger
than the result for Brownian paths constrained to come back to their starting points (loops)
obtained in Ref. [62], 63]. This is well confirmed by our numerics displayed in Fig. , where

the result for a stationary process which exhibits only diffusive growth of the area is also

shown.

4.6 Conclusion

We have computed the angular velocity correlation of a very general smooth Gaussian process
in the plane. This allowed us to obtain a simple closed formula for the diffusion coefficient
of the winding angle valid for most such stationary processes. Our formula also extends to
non-stationary processes, and we derive an expression for the algebraic area enclosed by such
processes.

For the Langevin equation of section [2.5| with m,n — 0 we find a diffusive fluctuation
®(7) = 2D7 with D ~ 2.92, in contrast to the large n form of 2.31] The main relevance of

this section is, however, to the theory of classical random processes.
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5 Summary

In the first part of this work we calculated the renormalized dissipation parameter of a particle
in a ring in presence of a dissipative Caldeira-Legget (CL) environment and an external force.
Using a renormalization group reasoning we found that the renormalized dissipation n** flows
to a fixed point 1. = h/27 for large n > n.. We also studied the Langevin equation which
describes the semiclassical limit of this model, and expanded the model for a dirty metal
type of environment.

The flow to a fixed point is related to a known quantization of the relaxation resistance
in a Coulomb box with a single channel. The mapping between the models assumes many
channels and we found that a certain average which contains the relaxation resistance is
quantized for large 7.

We considered the condition for a proposed box experiment. The field E should be suffi-
ciently small so that gg is sufficiently near the fixed point. For an initial g ~ 1 integration of
dgr/O0In E = g% yields gr = 1/ In(hw./E) < g. E.g. for gr < 0.1 and a typical hw, ~ 1 meV
one needs E/h < 108Hz. E/h has frequency units, corresponding to 10® electrons/sec flowing
into the box. We propose measuring the charge fluctuations (noise) So(w) = €2(N;Ny),, at
a frequency, temperature and level spacings A such that A < w,T < 10%Hz, to yield the
DC response 1' and . We predict then that the noise Sg(w)(2£=)?L = L

ol p 27 18

quantized.

In the second part of the work we studied the equilibrium properties of the particle, using
perturbation in either large or small values of 1 and using a Monte-Carlo (MC) algorithm.
For the algorithm we found that a sign problem emerges and prevents identification of the
n® and hence numerical verification of the fixed point was not feasible.

In the third part of the work we studied a problem in the theory of classical random
processes. Given a general two dimensional Gaussian processes on a plane we asked what

are the properties of the angle ¢; around the center. This problem has some relevance to
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the semi-classical limit of our model if the process corresponds to a CL environment. We

found that for stationary processes with correlation c(s) the angle diffuses with a diffusion

coefficient D = fooo ds 15&?52 if this integral is finite. For a random walk process the variance
of the angle grows as %1112 t, and the variance of the algebraic area enclosed by a stationary

process diffuses as Dy = [ ¢/(s)ds.
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Appendix A Derivation of the semiclassical Retarded

Green’s function

A.1 Detailed derivation of the 1st order term

First order perturbation of the Green’s function

1 Ao .
Rilt)' = _Z_/ By, 1, <9t19t2 cos(by, — etg)et’9t> = (A.1)
' 2 t1,t2 So

—1 oA .o . . .o .
T By, +, E Oc;_y 254 EXP [zaﬂtl + il + 100y, — 106, + iasby + za49t] |lai=0
t1,t2 o=+

An Averaging with Gaussian weight

<ei0tl+i€t2+...+iét1+iét2+“.> _ ei<6t1+i9t2+...> e—<(9t1+9t2+...)(9}1+9}2+...)> _

vt Hivta e iRty e iRty o+ (A.2)

The retarded function

1 _
Ryy =
l E o Bt ; eial(_O'Rtg,tl+O£4Rt,t1)+ia2(0’Rt1,t2_+CM4Rt,t1)+i0£3(0’Rt1Yt/—URt2‘t1+Oé4Rt7tl)eiov(tlftQ) _
4@ 67 1,02
t1,t2 —4

1 ; -
4 / Y OaiBia(0Res ity — aRe)) (0 Rty ity + QuRi, ) (0 Ry — 0 Rip o + a7 1 71) =
lite ;4

— / Bt17t2 COS ’U(tl — tQ)Rt,h Rtth (Rtl,t’ — Rtg,t’) (AS)
t1,t2

In the last expression we use R;R_; = 0.
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A.2 Derivation of the 2nd order term

Using the same procedure for the second order

@ _ /5 2\ _
Ry = 5 {000:(Sine)” ) = (A4)
7 PN A A A 1
_g By, 15 Bis 4 01, 01, COS(QH - 0152)61530154 COS(9t3 - 6754)975’075 = 2? Btlytth37t4
t1,t2,t3,l4 Yt
% a <eioc1ét1 -‘rioczétQ +ia3ét3 +ia4ét4 +io1 9t1 —i019t2 +i0’29t3 —i029t4 -‘riOégét/ +icq 0 >
E : Qji=1..6 a; =0
o1,00=%

using the symmetry between o, «<» —oy and t; < t5 and similarly for 3, t4

1 . .

2 w(ty—to)—iv(ts—

Ri,t)’ - é/ By, 4y By gy 2 TG, =Ry, y, + Ryyay — Ry, + a6 Rey,)
t1,t2,t3,ta

[Rtl,tg + Rtg,tg - Rt4,t2 + aGRt,tz] [Rt1,t3 - Rtg,t:), - Rt4,t3 + aﬁRt,t3]

[Riyty — Rigty + Rigty + 6Rety| [Riy v — Riyvr + Rigvr — Rey v + 6 Rev] (A.5)

the choice t; > t3, 13,14, only R;;, remains. R, is real, we separate the exponent to two sinus

and two cosine terms as follow

R(2) _

Lt
1 . .
3 / By, 1, Biyt, (cosv(ty — ta) cosv(ts — tg) — sinwv(t; — to) sinv(ts — t4)) Reg,
t1,t2,t3,t4
[Riy o + Rig ity — Reyto] [Riyts — Rigts — Riyts) [Biy s — Rigty + Ry ]

[Riy v — Ry + Rig v — Re, v/] (A.6)

This long multiplicity of R; terms is now separated to 8 different terms. Four of these terms
are symmetric in t3 < %4, and four are antisymmetric. One of the symmetric terms will

vanish, we calculate explicitly the other 3 terms, which we label by a to ¢. Term ’a’:

1
ty = 5/ By, 1, cosv(ty — ta) X
t1.4
R, Ry 0y (Rey 0 — Ry ) Brg g cOsU(t3 — t4) (Rey g — Rigty) (Riy ity — Rigey) =
1 _
5/ Bt1,t2 COS ’U(tl — t2>Rt,t1Rt1,t2 (Rtl,t’ — Rtg,t’) Ctl,t2 (A?)
t1,t2
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This term in w space

1 ‘ ~
R® = —EREJ /RtBt cosvt (e —1) C;

w
t

with C; = 2(Ct(i)0 — C’t(l)). Similarly we choose two different terms b’ and ’c¢’ and write them

directly in w space
R’ = R? /R,El)Bt cosvt (' —1) (A.8)
t
2
R =R [/RtBt cosvt (e — 1)] = R;Y(RW)? (A.9)
t

note the Rgl) in the expression R is the first order result of the retarded green function. R¢

is the reducible term containing multiplication of R((ul)‘ Renormalized 7 for small v is

111 h
B = B, t (logt 1/t)) =

e 277 Rt tC() s Rt it (logt+ v+ O(v) + O(1/1))

2
27r23log v+ O(v)
i——i R 'B, t = —i RB t(logt+~v+14+0(v)+O(1/t)) =
773— - t 1= s tDy g Y =
h2 ) 2

1 —1
2mo 08" — o Gy ogv + O(v)
L1 /RBtQ— a logv + O(v)]* = a ——log”v + O(v) (A.10)
s L 22 1R 2z 0 U '

We identify four terms antisymmetric in 3 < ¢4 three of those terms will be of O(v) for small
v, and one term which we label d is the following, note that this term is applicable only for

the nonequilibrium case. In the Equilibrium case this term vanish (section [2.4.2))

Ri — _Ri/ Ry, Ry, By, By, sin vty sin vty(1 —ei‘”tl)/ (Rtyts — Biy)

t1,t2 t3
! 1/RB'tt2/RB't 21><1 + O(v)
- = —= sin v sin vty = — X vlogwv v) =
3 e A A

2

h
g logv + O(v) (A.11)
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We used here
1[0 t1+t3) L I t3 L t1+t3) 2 t

/ (Riy4t, — Riy) = —/ (1 — et 3)E) + —/ (ei sm—em(F 3)E> =— (A12)
n nJo n

t3 —t1

With the term R? we got b = —1, where without it b = 0.

Appendix B Derivation of the full Retarded function

B.1 Derivation of the S5;,; perturbation

In this appendix we calculate the renormalized dissipation with R, — %@(T)e_‘ST where

d — 0 and B, from Eq. (2.38). The first order from (2.60)) is

1 2 h 2 h |w| v
- _ l e 7 B t —(St t — : _ av/ =
nlt o0 n?h s1n(2?7) /t LeOS L e n Sm(?n) o 1+ w?rg v? — w?
2 h
- sin(%)[ln(vm) + 1] (B.1)

For the second order perturbation of the retarded Green’s function

v /A 1
Rzg?t)/ = 5 <9t"9tSi2nt>SO = ﬁ Z aahaz/ Bt1,tth3,t4€1€26364 X

€,0,0' =+ t1,t2,t3,t4

<ei% (alét/+a29t+elét1 +Egét2 +€3ét3 +€4ét4 )+i0'(9t1 —0t2 )+i0'/(6t3 _9t4 ) > | 0=
;=

— Z / Bti€1€2€3€4A2 COS[’U(tl - tg) + /MJ(tg — t4)] X
t

4H4
24N € u== v it ts )l

[iRyy — %h(elRt,tl + €Riy, +€sRiyy + €aRy,) (R — Riyp + Ry — iR, 1))

h h
Ay = eXp{Zgﬁl(—thm + Ry — Ry ) + 1562(Rt1,t2 + Ry, — PRy ,) ) X

h h
eXp{Z§€3(Rt1,t3 - RtQ,t:), - Mthl»tB) + Z§€4<Rt1,t4 - th,t4 + :uRts,t4>} <B2>
define 7 = t; —t5 and then the factor Ry, v — Ry, ¢ is finite only if either (i) ¢’ < ¢; and t5 < ¢/
hence t' < t; <t + 7, or (ii) t; <t and t3 > ' hence t' + 7 < t; < t’; in both cases and

similarly, for 7/ = t3 — 4

1 1
/ [Rtl,t’ — Rtg,t’] — ;T / [Rtg,t’ — Rt4,t’] — ;7'/ t/ — —OQ (B3)

t1 t3
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Therefore appears a factor [t; —to + pu(ts — t4)] cos[v(ty — ta) + pv(ts — ty)] = Oy sinfv(ty — ta +
pv(ts — t4)], and since 1/n = lim, ., RE
1

R — = 2 4h3 8 Z / Btl,thtg,t461€2€364(€1 —f- €9 —I— €3 —f- 64)A2 sin[v(t1 — tz) + [I,’U(tg — t4)]
772 2 v € to,t3,ta

All the £ index ¢; are equivalent in the expression by change of variables ejesezes Y . €; =

degesey this means the choice t; > to 34 and get (2.62)). It easy to see

h h
Z €2€3€4 exp{l§€2(Rtl7t2 + uBig i, — plyt,) + @§€S(Rt1,t3 — Ry g — 1Ry 1) } ¥

€5,p==%

h .o, h . h
exp{z§e4(Rt1,t4 — Ryt + Ry r,) = —8i sin? % sm; (B.4)

for t; > t3 > ty,t4 and zero otherwise. The remaining integral is

Bw B,
Sln’U tl—t2+t3—t4 Bt tBt t // L 2 —
/t1>t3>t2,t4 ( R Z w10 W1+ 0V)2(wa + 00)

(2hn)*v Invry[ln vrg + 1] (B.5)

after v derivation we get the result in (2.63]).

Appendix C The published letter

This appendix contains the published letter

e Y. Etzioni, B. Horovitz and P. Le Doussal, “Rings and Boxes in Dissipative Environ-

ments”, Phys. Rev. Lett. 106, 166803 (2011)
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We study a particle on a ring in presence of a dissipative Caldeira-Leggett environment and derive its
response to a dc field. We find, through a 2-loop renormalization group analysis, that a large dissipation
parameter 1 flows to a fixed point ng = 7. = h/27. We also reexamine the mapping of this problem to
that of the Coulomb box and show that the relaxation resistance, of recent interest, is quantized for large

7. For finite > 7, we find that a certain average of the relaxation resistance is quantized. We propose a

box experiment to measure a quantized noise.

DOI: 10.1103/PhysRevLett.106.166803

Two of the most important mesoscopic structures are
rings, for the study of persistent currents, and quantum dots
or boxes, for the study of charge quantization. Of particular
recent interest is the quantization of the relaxation resist-
ance R, defined via an ac capacitance of a single electron
box (SEB). Following the prediction of Biittiker, Thomas,
and Prétre [1] that R, = h /2e? for a single mode resistor, a
quantum mesoscopic RC circuit has been implemented
in a two-dimensional electron gas [2] and R, = h/2e?
has been measured. The theory has been recently extended
to include Coulomb blockade effects [3] showing that
R, = h/2e? is valid for small dots and crosses over to
R, = h/é* for large dots.

In parallel, recent data has observed Aharonov-Bohm
oscillations from single electron states in semiconducting
rings [4]. Further theoretical works have considered the
effects of dissipative environments on a single particle in a
ring [5], in particular, studying the renormalization of the
mass M* and its possible relation to dephasing [5-8].

It is rather remarkable that the ring and box problems are
related via the AES mapping [9] where the ring experi-
ences a Caldeira-Leggett (CL) [10] environment. While the
exact mapping assumes weak tunneling into the box with
many channels, it has been extensively used to describe
various tunnel junctions [11], the Coulomb blockade
phenomena in SEB and in the single electron transistor
(SET) [11-21].

In the present work we address the ring problem by the
real time Keldysh method and study it using a 2-loop
expansion and renormalization group (RG) reasoning.
We find that perturbation theory identifies an unexpected
new small parameter sin(%) where 7 is the dissipation

parameter on the ring, or the lead-dot coupling in the
SEB. We infer that a large n flows to a fixed point
ng = M. with i/27, = 7. An intuitive argument for this
quantization is given before the conclusions. In
Monte Carlo studies [15,18] of M*, no sign of a finite
coupling fixed point has been detected. Our method
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evaluates the response to a strictly dc electric field E,
equivalent to a magnetic flux through the ring that in-
creases linearly with time, hence a nonequilibrium re-
sponse. We claim that thermodynamic quantities like M™,
that are flux sensitive, decouple from the response to E, a
response that averages over flux values.

In terms of the SEB, our results extend the previous
analysis [3] to the case of many channels N, [22]. We note
that for N. > 1 the relaxation resistance for noninteracting
electrons becomes h/(2N,.e?) [1]. We find that for strong
coupling, n/h = 1 the relaxation resistance is quantized to
2/ h up to an exponentially small correction ~e~7"/%_ For
finite 7, but still n > 7. we find that a certain average of
the relaxation resistance is quantized [see Eq. (12) below].

We proceed to reexamine the mapping of the box and
ring problems. For the SEB one has the action

§= {zdln(lhat — €)dan — EC(N - NO)Z}
t

an

+ Slead + Slun: (])

where d,, are dot electron operators, n = 1, ..., N, labels
the channels, N = ¥, d%,d,,.. E, = e*/(2C,) with C, is
the geometric (bare) capacitance, N is proportional to
the gate voltage, S)..q describes free electrons on the lead
and S,,, is the tunneling between the lead and the dot.
We introduce an auxiliary variable 6, with an action
E, [[N — Ny — h6/2E T and rewrite the total action as

t o ; n?6? .
S = [ {Zdan(mat — €, — h,)d,, + TR NOhH,}

an c

+ Slead + Stun~ (2)

In terms of fermion operators d,, = ¢'?®d,,, integrating
out these fermions and expanding in S, yields the well
known effective action for the SEB [9,11-13,15-20].
Equation (2) shows that the equivalent particle on a ring
has a mass M = #?/(2E,) (the radius of the ring is chosen
as = 1) and there is a flux (in unit of the flux quantum)
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¢, = —N, through the ring. The tunneling amplitudes
squared, weighted by the number N, of channels, become
the dissipation parameter 7 of the particle. The mapping
becomes exact in the large N,. limit at fixed 7 and for small
mean level spacing [23] A < E_, a situation that can be
realized [22]; the application of this mapping is therefore
limited to the temperature range A<T <KE..
Furthermore, by shifting ©0, — 16, + 2E.(N, — N,) we
obtain 7(f,) = ZEC[(]\A])N“ — Ny] and also a relation be-
tween response functions

h’K,, = —2Ehd(t — t') + 4E2K, ,, 3)

where K, = +i6(t — '){[,, 6,]) is the response for the
ring while K,, = +i6(¢t — ¢'){(N,, N,/]) is for the SEB.

The SEB response is parameterized as [3] eh—zK(w) =
Co(1 + iwCyR,) where Cj) is the effective dc capacitance
and R, is the celebrated relaxation resistance [1]. The
corresponding K, is the response to a change in the
external flux and is parameterized as

K(w) = —Ko(¢,) + iwK (¢,) + O(@?) (4

and the persistent current from a time independent flux is
0,y = [§ Ko(¢h)dep.. The continuation to imaginary
time identifies the curvature of the free energy [5—8], or
an effective mass, as %2275 =nh/M*(d,) = Ko(,); e.g.,
without tunneling M* = M while for large 7 the effective
mass M* ~ ¢™/" is exponentially large.

Consider now the system in presence of a (classical)
electric field E, of Hamiltonian 8§ H ; ring = —(E + OE(1))0
and define the linear response 8(0,)y = [, R,,8E(') toa
small perturbation 0 E. This response is studied below for a
dc field. In general its low frequency form is [see (8)
below] R(w) = m which defines ng(E) as a renor-

malized dissipation parameter. Since E = h¢, we expect
hw’R(w) = K(w), hence the K, term in Eq. (4) is not
reproduced. To resolve this discrepancy we note that an
additional constant flux ¢, in the total flux ¢, + Et/h can
be eliminated by redefining the origin of the time ¢, there-
fore the persistent current part should be eliminated.
More precisely, define hep (1) = Et; the 1st term in (4)
Ky(¢,) = Ko(Et/h) becomes a periodic function, i.e., an
ac response at wy = 27E/h. For a dc response at finite E
this persistent current response averages to zero, i.e.,
JiKo(p,)dp, = 0. The same reasoning applies to a ¢,
average on K;(¢,). Hence the dc response to a dc field is
given by

lim 3)15%7= j [ Ki()ddb.. )

Therefore, i/ng = [} Ki($,)d¢p, where we denote 1z =
ngr(E — 0). The order of limits in (5) signifies that 7y is

essentially a nonequilibrium response. The physical pic-
ture is that in a dc field the particle rotates around the ring
and produces two types of currents. First is the persistent
current that oscillates in time as ¢, increases and is there-
fore time averaged to zero; this current is nondissipative.
Second, there is a genuine dc response from the iw K term,
which is dissipative.

In terms of the SEB response, using Eq. (3), we obtain
the following mapping of ring and box parameters as
functions of flux ¢, and Ny:

M- Co(Np)
M*(¢x) C, ’
h 1 C2(Ny) ©
0
a = ; 0C§ R, (No)dN,,

and we note also that fé Co(No)dNy = C,.

At this stage we can already propose an interesting
experiment for the SEB. By analogy with E = h¢, in the
ring, we propose measuring the response to a gate voltage
that is linear in time N, ~ ¢. This leads to a dc current into
the Coulomb box whose dissipation is the average in
Eq. (6). This average is predicted to be quantized, at least
for n > n,, as discussed below.

We proceed now to study the ring problem. To derive the
Keldysh action, we start from the well known action of a
particle in a CL environment [10] in two dimensions
with a position vector x;, where * correspond to the
upper and lower Keldysh contour, Sx =i [, , %,R . . X +
3 [.%B, % and =J(xf+x;7) and R, =
(x;" — x;7)/h. The simplest response function R(w), in
Fourier transform, and the noise function B(w), at zero
temperature, are R(w)=[Mw?>+ inw]™!, B(w)=
hn|w|. This quadratic problem corresponds to a particle
of mass M and a friction 1 within a Langevin equation
MX, + nx, = &,; each component of &, = (&7, &) is ran-
dom with correlations B(w).

We project now the position on a ring, ie., X;" =
(cosf;, sinf;"), and rewrite the action in terms of classical
and quantum angle variables 6, = (6, + ;) and 0, =
(6 = 6,)/m:

SK = SO + Sint + SC!

Sy =1 f O.R'50, =i f O.R,\0, — iE [ 8,
1t tt t

2 (AN . (T A (N
Sint = . fml B,y sm(i 0:) s1n<§ 0,/)003(0,/ - 0,),
S, = %’ [[sm(h@ )0, — 1,6,
where ¢~ is infinitesimal below 7. A Gaussian term S, has

been singled out so that a perturbation scheme in powers of
Sint> 5. can be defined. We have added an external electric
field E, hence the particle acquires a velocity v = (#,) as a
function of E. To perform a perturbation theory it is
convenient to introduce the bare velocity vy = E/n and
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to define 0, = 86, + vyt. The derivative of the v(E) char-
acteristics is easily shown to be related to nz(E) via

dv 1
6 0/ = i R =, 8
dE (f > L R

where R, = (0,8, is the full response function defined
above. We note that the form (7) for Sg has been derived
also for the SEB [9,11,12,20,21].

The semiclassical limit of (7), which corresponds to
small %/, is obtained by linearizing the sine terms, and
is equivalent to a Langevin equation (also obtained for the
SET [24])

MO, + nb, = £ cosh, + & sinb, + E )

which is in fact the 2D Langevin equation projected on the
tangent to the ring.

We perform a perturbative expansion of the action with
respect to Si,, S. to compute nz(E). The perturbative
expansion of mg(E) exhibits logarithmic divergences
when E — 0. The velocity v, thus provides a natural low
frequency cutoff for this divergences, and the mass pro-
vides a high frequency cutoff at w. = n/M. The expan-
sion terms can be classified as n loops by looking at
the small 7/n power of each term which is of order
R>71B"/n* ~ 1" /n""!. However, we find, due to the
periodicity of the action in the angle variables, that the
R>"~! factors in front of the logarithmic terms become
periodic functions: The result up to two loops and O(vy) is

1 1 2 h 4 h
=——-— sin(—) In[vy/w.] + —st( )
mE) 7m wn \2y o \27

x sin(%){lnz[vo Jo'1+ boIn[vy/wl],  (10)

where by = O(1) may weakly depend on 7 and
! /o, =1+ 0(1/7?). In the semiclassical limit of large
7) One can reexpress (10) in terms of the small parameter
y = win and yp = p— (E) and obtain the 2-loop B function

as —Edgygr = y% — byyy + O(y%) which has the equi-
librium form [13,14] if b, = —1. We show in Fig. 1 our
numerical solution for Eq. (9) with a reasonable fit to the
2-loop form with by = 0. The full quantum theory (7)
including its nonequilibrium limit (5) differs from these
descriptions [13,14,21].

We consider now the quantum theory, beyond large 7.
We note that in (10) g = 2 sin(%) acts as an unexpected

small parameter for the expansion, since all divergences
vanish when g = 0. It raises the interesting possibility that
g = 0 be viewed as a RG fixed point. For that we need to
find a renormalized coupling which obeys multiplicative
RG, the simplest choice being gr =2 sin(%). The
question is then whether the B-function 8 = —Edggp
can be written only in terms of gg. Although the non-
periodic 1/m factor in (10) appears at first problematic,
we propose that resummation from higher loops, which
allows for higher order terms O( ;) changes the 1-loop

term in (10) by 5 3y sm( ) so that by taking a sine of
both sides it yields to order I's

gr = & * g2 In(vy/wl) + g’[In*(vy/w).)
+ by In(vy/wl)], 11)

where * refers to g = 0 with cos(%) = *1, leading to
Blgr) = ¥k — bogi + O(g}).

To further motivate this proposal we consider the
response R, , = i2(0,sin(26,)). Physically, e*it/20,
corresponds to an electric field pulse SE(r) = = 715(1
') or equivalently a rapid change of flux by = 1, therefore
R, ;s corresponds to the difference in response to these two
flux pulses For R, the 1-loop term is fully periodic with

% — s1n( ) in Eq. (10). We note that there are many other

operators that have vanishing perturbations at g = 0 to 2nd
order in S;,, S., e.g., the dissipation term in Eq. (7)
(6, sin(hé,)), or the response to an ac field with frequency
v (0, cosd6, sink 6,). We propose then that g = 0 are exact
zeroes of the perturbation expansion and requiring an RG
structure leads then to the result (11).

n=1,23,... that are attractive at n > n,, and repulsive
at n < n,; i.e., the flow of n # 7, is always to smaller 7.
At these fixed points a Gaussian evaluation yields the
correlation {cos#, cosf,) ~ t~>". We recall now a theorem
for the lattice model [25] where the equilibrium action with
mass related cutoff is replaced by an action on a lattice
resulting in an XY model with long range interactions. The
theorem states [25] that {cos@, cosf,) ~ 1/#%; this result
was also derived in first order in 7 [8]. The range n > 7,

1
0.98 ¢
0.96 1
% 0.94¢
0.92¢

0.9f

088} .

FIG. 1 (color online). Velocity-field relation for Eq. (9) with
1 = 30h/ 7. The circles are numerical data, the full line is a 1st
order perturbation in 1/7, the dashed lower (red) line is its
logarithmic expansion for large Invy/w,. (vy = E/m being the
bare velocity) and the dashed upper (black) line includes the 2nd
order logarithmic term, corresponding to Eq. (10) for # — 0 and
by = 0. The 2nd order terms are also shown in the inset after the
Ist order is subtracted, i.e., £2 = £ — ] — win(lnz)—(z —1).

nv nv
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has an RG flow to 7, and is therefore consistent with the
theorem. The hypothesis of Gaussian fixed points corre-
sponding to n = 2 is inconsistent with the theorem, i.e.,
(cosf, cosb) becomes a relevant operator at the n = 2
points rendering them unstable. For n < 7, the system
may have non-Gaussian fixed points or a line of fixed
points as hinted by the small 7 perturbation [8]. Note
that in the SEB problem cos6, corresponds to a lead-dot
voltage and its correlations determine the SET conduc-
tance [9,11,19], while in the ring problem it corresponds
to fluctuations in the circular asymmetry.

The special value n; = i/(27r) has a topological inter-
pretation as a Thouless charge pump [26]. Consider a slow
change of ¢, by one unit with iih, = nz(6). For 1z =
h/(27) the total change in the position of the particle is
f,{é}dt = 277, i.e., the particle comes back to the same
position on the ring and a unit charge has been transported.
Such quantization requires a gap [26], though gapless cases
are also known [27,28]. The quantized 7y also results from
arguing that there should be a unique frequency wy = v as
E — 0, as suggested by linear response.

We conclude that for n > 1, = 7, the SEB satisfies
the quantization

1 C2(Ny) h
[0 °C§° R,(Ng)dN, = e (12)

In particular, when 1/h = 1 we have from the known
M*/M ~ e™/" [5-8] and from Eq. (6) that Cy/C, = 1 +
O(e~™/"). We expect R, to be independent of N, at large
7, hence R, = %[1 + O(e~™"/M)], similar to the N, = 1
case [3].

The conductance for the ring can be defined by the
voltage around the ring 277E/e and the current e{)/2,
hence we expect the conductance for n > 7y to be

62 2

e
477'27]R h '

Gring = (13)
Finally, we reconsider the conditions for our proposed
box experiment. The field E should be sufficiently small so
that gy is sufficiently near the fixed point. For an initial
g~ 1 integration of dggr/dInE = g% yields gp =
1/In(hw./E) < g. For example, for gz < 0.1 and a typi-
cal hw, = 1 meV one needs E/h < 10% Hz. E/h has fre-
quency units, corresponding to 10% electrons/ sec flowing
into the box. We propose measuring the charge fluctuations
(noise) Sp(w) = eX(N,N,), at a frequency, temperature
and level spacings A such that A < w, T < 10® Hz, to
yield the dc response (5) and (12). We predict then that the
noise Sy(w)(%e)? L = % = 277 is quantized.
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