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Abstract

In this work we study the dynamics of a particle on a ring in presence of a dissipative

Caldeira-Leggett (CL) environment. In the first part of the work we study this model

using the Keldysh non-equilibrium formalism to derive the particle’s response to an

external DC field. From the response we find the renormalized dissipation ηR up to

second order and using a renormalization group analysis find that for a large dissipation

parameter η > ηc η
R flows to a fixed point ηc = ~/2π. We also study the semiclassical

limit of the problem where we show that the model reduces to a Langevin equation and

study the equation numerically. For the semiclassical limit we also expand the model

for a more general environment, that of a dirty metal (DM).

We reexamine the mapping of the CL problem to that of the Coulomb box and find

that a certain average of the relaxation resistance is quantized for large η and propose

a box experiment to measure the corresponding quantized noise.

In the second part of this work we study equilibrium properties. Using the Matsub-

ara imaginary path integral formalism we analyze the model perturbatively for both

large and small η. We develop a Monte Carlo (MC) algorithm to solve this problem.

However, when the flux through the ring is half the quantum flux, we encountered the

the infamous sign problem, hence our numerical data cannot identify ηR.

Motivated by the small η behaviour of the particle in the classical limit, we consider

in the last part of this work the winding angle φt around the center of a smooth

Gaussian process in the plane with arbitrary correlation, where the CL correlation is

but one choice for this correlation. We obtain the stationary distribution of φ̇t as well

as a closed formula as a function of the correlation function for the variance of the

winding angle, the correlations of einφt with integer n and the variance of the algebraic

area enclosed by the process. Those results are tested numerically.
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1 Introduction

Conductance in the context of quantum mechanics is shown to be quantized in various models

such as the quantum Hall effect and one dimensional wires. In this work we discuss a new

case of conductance quantization for the model of particle on a ring affected by a noisy

environment and relate it to the quantization of the relaxation resistance in a single electron

box (SEB).

Following the prediction of Büttiker, Thomas and Prêtre [4] the quantization of the

relaxation resistance Rq, defined via an AC capacitance of a single electron box (SEB) is of

recent interest. The theory has been recently extended to include Coulomb blockade effects

[5] showing that Rq = h/2e2 is valid for small dots and crosses over to Rq = h/e2 for large

dots. A quantum mesoscopic RC circuit has been implemented in a two-dimensional electron

gas [6] and Rq = h/2e2 has been measured.

The problem of a single particle on a ring under the influence of a dissipative envi-

ronments has been considered in many theoretical past works particularly for studying the

renormalization of the mass M∗ and its possible relation to dephasing [7–11]. A recent study

has observed Aharonov-Bohm oscillations from single electron states in semiconducting rings

[12].

The common prototype for the description of a dissipative environment is that of Caldeira-

Leggett (CL) [13], where the environment is modeled as a large set of oscillators linearly cou-

pled to a quantum system. In this work we present a detailed study of this model, namely a

particle confined to a ring, driven by a tangent electric DC field. The latter is caused by a

magnetic flux through the ring linearly changing in time and subjected to a CL environment.

A schematic figure of the model is given in Fig. 1.

There is a known mapping between the SEB and the model of a particle on a ring affected

by CL environment [14, 15]. While the exact mapping assumes weak tunneling into the box

with many channels, it has been extensively used to describe various tunnel junctions [16],
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Figure 1: Model of a particle on a ring affected by a noisy environment. A tangent electric

field E or an equivalent magnetic flux through the ring that increases linearly with time

creates a force on the particle, while a dissipative environment creates noise with long range

time correlation and a frictional force on the particle.

the Coulomb blockade phenomenon in single electron box (SEB) and in the single electron

transistor (SET) [16–27].

In the main part of this work, section 2 we study this ring model using the Keldysh

method for non-equilibrium dynamics and a renormalization group (RG) reasoning. We

find that a small parameter in the perturbation theory contains a periodic function of the

dissipative parameter η, this parameter is mapped to the lead dot coupling in the SEB. The

RG equation suggests that this dissipative parameter flows to a fixed point η = ηc with

ηc = ~
2π

. We also examine the mapping between the two models and show that a certain

average of the relaxation resistance Rq is quantized for finite η > ηc [2, 3].

A related approach for the study of quantum systems coupled to dissipative environ-

ments is the influence functional of Feynman-Vernon [28], which express the influence of the

2



environment on the system. An exponential decay in time of the functional identifies a de-

phasing time τφ. Using notations of the present work the attenuation factor is Fτ = e−
1
2
C̃τ ,

which for a dissipative environment at high temperatures is ∼ e−τ/τφ and C̃τ is a correlation

function of the system to be define later. A study of mesoscopic systems coupled to both

an external driving force and to a dissipative environment [29], found that the two effects of

the environment, dissipation and dephasing, as described above, are competing effects. The

dissipation mechanism in the system corresponds to Landau-Zener transitions through a gap,

i.e. avoided crossings, e.g. as for rings with static disorder. Dephasing is the destruction of

quantum coherence, the latter being responsible for localization in energy space. The destruc-

tion of localization therefore enhances the rate at which energy is pumped into the system,

increasing the Landau-Zener transition rate. A competing effect is the relaxation, i.e. the

rate at which energy is leaving the system into the environment. Due to interplay between

these two effects the conductance depends on the external field in a nonmonotonic way. In

a recent work [30] dephasing of the particle in a ring coupled to dissipative environments of

either CL or DM types was calculated in small η perturbation at finite temperatures.

In section 3 we study this model in Equilibrium, both perturbatively and using Monte

Carlo (MC) simulations and try to show this phase transition. However, we encounter a sign

problem, so that the MC results are not conclusive.

In section 4 we study the behavior of an arbitrary correlated noise (or process) on a two

dimensional complex plane. For such noise one can define the norm and the phase of that

noise in the form ξt = ξxt + iξyt = |ξt| eiφt where ξi=x,yt are a real Gaussian noise function

with arbitrary correlation function which is independent of i. Specifically we ask what is

the time correlation function and other related properties of the noise phase φt and how are

these properties depend on the corelation function of ξit. We give a detailed answer for this

question.

This section is motivated by the Langevin equation of section 2. For the case where the ξit

3



correlation function is that of CL φt corresponds to the semiclassical solution of the particle

dynamics in the small η limit. This section was published in [1].

A proposed box experiment that verifies the result in section 2 is given with the summary

of the work in section 5.
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2 Particle on a ring and the coulomb box in dissipative

environments

2.1 Introduction

In the present section we address the problem of a particle on a ring affected by a CL

environment and find that the dissipation parameter η is quantized. We examine the mapping

of the SEB to this problem and relate this quantization to the known quantization of the

relaxation resistance Rq in SEB. The essence of this section was published [2] (reprint in

appendix C) and future publication is in preparation [3].

We begin in section 2.2 with examining the mapping of the SEB problem and the ring

model. In terms of the SEB, our results extend the previous analysis [5] of the relaxation

resistance Rq to the case of many channels Nc [31]. We note that for Nc > 1 the relaxation

resistance for noninteracting electrons becomes h/(2Nce
2) [4]; no result exists for interacting

electrons. We find that for strong coupling, η/~ & 1 the relaxation resistance is quantized to

e2/h up to an exponentially small correction ∼ e−πη/~. For finite η, but still η > ηc we find

that a certain average of the relaxation resistance is quantized (see Eq. (2.78) below).

In our approach to the study of the ring problem, we evaluate the response to a strictly

DC electric field E, equivalent to a magnetic flux through the ring that increases linearly

with time, meaning a non-equilibrium response. We therefore use a real time Keldysh method

which is derived in section 2.3. While thermodynamic properties of ring problems has been

much studied, including extensive MC studies [19, 20] of M∗, no sign of a finite coupling

fixed point has been detected. We claim that thermodynamic quantities like M∗, that are

flux sensitive, decouple from the response to electric field E, a response that averages over

flux values.

In section 2.4 we consider the semiclassical limit of this action, which is equivalent to

the large dissipation limit, and find perturbative results for the Green’s function in powers of
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large η. These results are compared with known results [17, 18] from equilibrium formulation

and we discuss a possible reason by which a nonequilibrium formulation of the problem gives

different result. In the following section 2.5 we show that the above semiclassical action

relates to a Langevin equation, and study the equation using numerical simulations. We

discuss limitation of the numerical procedure. In addition to the CL environment we study

in section 2.6 the more general case where the environment is not that of CL but rather that

produced by a dirty metal, the relevant Langevin equation is derived and some numerical

results are shown.

In section 2.7 we derive the large η perturbation for the quantum problem and in 2.8

we address this expansion as a 2-loop RG equation. We find that the perturbation theory

identifies an unexpected new small parameter sin( ~
2η

) and infer that a large η flows to the

above mentioned fixed point ηR = ηcAn intuitive argument for this quantization as well as

the conclusions are given in section 2.9.

2.2 Mapping between the particle on a ring and a Coulomb box

In the present section we examine the mapping of the box and ring problems. The action for

the SEB is given by

S =

∫
t

{∑
αn

d†αn(i~∂t − εα)dαn − Ec(N̂ −N0)2

}
+ Slead + Stun (2.1)

where dαn are dot electron operators, n = 1, ..Nc labels the channels, N̂ =
∑

αn d
†
αndαn,

Ec = e2/(2Cg) with Cg is the geometric (bare) capacitance, N0 is proportional to the gate

voltage, Slead describes free electrons on the lead and Stun is the tunneling between the lead

and the dot. We introduce an auxiliary variable θt with an action Ec
∫
t
[N̂ − N0 − ~θ̇/2Ec]2

and rewrite the total action as

S =

∫
t

{∑
αn

d†αn(i~∂t − εα − ~θ̇t)dαn +
~2θ̇2

t

4Ec
+N0~θ̇t

}
+ Slead + Stun . (2.2)
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In terms of fermion operators d̃αn = eiθ(t)dαn, integrating out these fermions and expanding

in Stun yields the well known effective action for the SEB [14–17, 19–27]. Eq. (2.2) shows

that the equivalent particle on a ring has a mass M = ~2/(2Ec) (the radius of the ring is

chosen as = 1) and there is a flux (in unit of the flux quantum) φx = −N0 through the

ring. The tunneling amplitudes squared, weighted by the number Nc of channels, become

the dissipation parameter η of the particle. The mapping becomes exact in the large Nc limit

at fixed η and for small mean level spacing [32] ∆� Ec, a situation that can be realized [31];

the application of this mapping is therefore limited to the temperature range ∆ < T � Ec.

Furthermore, by shifting ~θ̇t → ~θ̇t + 2Ec(N̂t −N0) we obtain ~〈θ̇t〉 = 2Ec[〈N̂〉N0 −N0] and

also a relation between response functions

~2K̃t,t′ = −2Ec~δ(t− t′) + 4E2
cKt,t′ (2.3)

where K̃t,t′ = +iθ(t−t′)〈[θ̇t, θ̇t′ ]〉 is the response for the ring while Kt,t′ = +iθ(t−t′)〈[N̂t, N̂t′ ]〉
is for the SEB. The −2Ec~δ(t−t′) term in (2.3) is essential, e.g. without tunneling the charge

fluctuations are frozen, Kt,t′ = 0, while the corresponding particle is free with the correlation

−2Ec~δ(t− t′).
The SEB response is parameterized as [5] e2

~ Kω = C0(1 + iωC0Rq) where C0 is the

effective DC capacitance and Rq is the relaxation resistance [4]. The corresponding K̃t,t′ is

parameterized as

K̃ω = −K0(φx) + iωK1(φx) +O(ω2
)
. (2.4)

The fluctuation dissipation theorem (FDT) relates K̃ω and the linear response to δHring =

+~θ̇δφx(t)

~〈θ̇t〉 = −
∫
t′
K̃t,t′δφx(t

′) (2.5)

The response term K0 corresponds to the persistent current, i.e. for a time independent flux

7



one can integrate the last expression to get

〈θ̇t〉 =

∫ φx

0

K0(φ′x)dφ
′
x (2.6)

The continuation to imaginary time identifies the curvature of the free energy [7–11, 14, 15],

or an effective mass, as 1
~
∂2F
∂φ2

x
= ~/M∗(φx) = K0(φx); e.g. without tunneling M∗ = M while

for large η the effective mass M∗ ∼ eπη/~ is exponentially large.

Consider now the system in presence of a (classical) electric field E, of Hamiltonian

δHring = −(E + δE(t))θ and define the linear response δ〈θt〉E =
∫
t′
Rt,t′δE(t′) to a small

perturbation δE. This response is studied below for a DC field. In general its low frequency

form is (see Eq. (2.16) below) Rω = −1
iωηR(E)

which defines ηR(E) as a renormalized dissipation

parameter. Since E = ~φ̇x we expect ~ω2Rω = K̃ω, hence the K0 term in Eq. (2.4) is not

reproduced. To resolve this discrepancy we note that an additional constant flux φx in the

total flux φx + Et/~ can be eliminated by redefining the origin of the time t, therefore the

persistent current part should be eliminated. More precisely, define ~φx(t) = Et; the 1st

term in (2.4) K0(φx) = K0(Et/~) becomes a periodic function, i.e. an AC response at

ωE = 2πE/~. For a DC response at finite E this persistent current response averages to

zero, i.e.
∫ 1

0
K0(φx)dφx = 0. The same reasoning applies to a φx average on K1(φx). Hence

the DC response to a DC field is given by

lim
E→0

lim
ω→0

K̃ω

ω
= i

∫ 1

0

K1(φx)dφx . (2.7)

Therefore ~/ηR =
∫ 1

0
K1(φx)dφx where we denote ηR ≡ ηR(E → 0). The order of limits in

(2.7) signifies that ηR is essentially a non-equilibrium response. The physical picture is that

in a DC field the particle rotates around the ring and produces two types of currents. First is

the persistent current that oscillates in time as φx increases and is therefore time averaged to

zero; this current is non-dissipative. Second, there is a genuine DC response from the iωK1

term, which is dissipative.

8



In terms of the SEB response, using Eq. (2.3), we obtain the following mapping of ring

and box parameters as functions of flux φx and N0:

M

M∗(φx)
= 1− C0(N0)

Cg

~
ηR

=
e2

~

∫ 1

0

C2
0(N0)

C2
g

Rq(N0)dN0 (2.8)

and we note also that
∫ 1

0
C0(N0)dN0 = Cg.

2.3 Keldysh path integral formulation for action on a ring

In this section we introduce the model used for the particle on a ring in non-Equilibrium. To

derive the Keldysh action [33, 34] , we start from the known partition function of a particle

in a CL environment [13]

Z =

∫
Dx̂t,Dxt

e−SK [x,x̂] (2.9)

the action SK in two dimensions with a position vectors x±, where ± correspond to the upper

and lower Keldysh contour is

SK [x, x̂] = i

∫
t,t′

x̂tR
−1
t,t′xt′ +

1
2

∫
t,t′

x̂tBt,t′x̂t′ (2.10)

the fields xt = 1
2(x+

t + x−t ) and x̂t = 1
~(x+

t − x−t ) are known as the classical and quantum

fields respectively. The retarded and the Keldysh Green’s function in time and frequency

spaces are

Rτ =
1

η
(1− e−ητ/m)Θ(τ) Rω = −1/[mω2 + iηω] (2.11)

Bτ = −~η/
(
πτ 2
)

τ 6= 0 Bω = ~η |ω| .

This quadratic action corresponds to a particle of mass m and a friction parameter η within

a Langevin equation

M ẍ + ηẋ = ξt (2.12)

9



each component of ξt = (ξxt , ξ
y
t ) is a random number with correlation function

〈|ξi|2ω〉 = Bωδij.

We project the position on a 2 dimensional ring by

x+
t = [cos θ+(t), sin θ+(t)] x−t = [cos θ−(t), sin θ−(t)] (2.13)

and implicitly assume R = 1 and all parameters are length dimensionless. Writing the action

in term of classical and quantum angle fields θt = 1
2 [θ+(t) + θ−(t)] and θ̂t = 1

~ [θ+(t)− θ−(t)].

With some algebra the action is

SK =
2i

~

∫
t,t′
R−1
t,t′ sin(

~
2
θ̂t) cos(

~
2
θ̂t′) sin(θt′ − θt) +

4

~2

∫
t,t′
Bt,t′ sin(

~
2
θ̂t) sin(

~
2
θ̂t′) cos(θt′ − θt) (2.14)

2.3.1 Definition of Green’s function and of renormalized dissipation

The renormalized retarded and correlation Green’s functions are defined by

i
〈
θ̂t′θt

〉
= RR

t,t′ 〈θt′θt〉 = CR
t,t′ 〈θt〉 = vRt. (2.15)

Causality always ensures that always
〈
θ̂t

〉
=
〈
θ̂tθ̂t′

〉
= 0. In the following we calculate (2.15)

perturbatively in 1/η. We identify the normalized dissipation by

1

ηR
= lim

ω→0
(−iω)RR

ω . (2.16)

Which is equivalent to the definition by derivation of the velocity with respect to the external

field,

1

ηR
=

dvR

dE
=

d

dE

〈
θ̇t

〉
= i

〈∫
t′
θ̇tθ̂t′

〉
=

∫
t′

d

dt
RR
t,t′ =

∫∫
t′,ω

(−iω)RR
ω eiω(t−t′) =

lim
ω→0

iωRR
ω = lim

τ→∞
Rτ (2.17)
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2.4 Semi-classical limit of the action

For the semi-classical limit of the action, which is equivalent to the large η regime the

quantum field is taken to the linear order sin(~
2
θ̂t) → ~

2
θ̂t and cos(~

2
θ̂t) → 1. In this limit

the retarded part of the action turn Gaussian while the correlation part remains a non-linear

one. Therefore we solve this action perturbatively around S0 which contain the retarded

function.The model partition function is Z =
∫
D[θ]

e−S0−Sint with

S0 = i

∫
t,t′
θ̂tR

−1
t,t′θt′ − iE

∫
t′
θ̂t′ = i

∫
ω

R−1
ω θ̂ωθ−ω − iE

∫
t′
θ̂t′ = i

∫
t,t′
θ̂tR

−1
t,t′δθt′ (2.18)

Sint =
1

2

∫
t,t′
θ̂tBt,t′ θ̂t cos(θt − θt′).

where in the last equality of S0 we define θt = δθt + vt with v ≡ E/η. With the above action

the bare Green’s functions are

i
〈
θ̂t′θt

〉
S0

= Rt,t′ 〈θt〉S0
= vt =

E

η
t 〈θt′θt〉S0

= 0 (2.19)

In the following we calculate the renormalized Green’s function up to second order in Sint

which is equivalent to orders in 1/η

RR
t,t′ = Rt,t′ +R

(1)
t,t′ +R

(2)
t,t′ = Rt,t′ + i

〈
θ̂t′θt(−Sint + 1

2S
2
int)
〉
S0

Ct,t′ = C
(1)
t,t′ + C

(2)
t,t′ =

〈
θt′θt(−Sint + 1

2S
2
int)
〉
S0

(2.20)

and use it to identify the dissipation parameter.

2.4.1 Perturbation for the retarded function

The Retarded Green’s function for first order in the perturbation

R
(1)
t,t′ = i

〈
θ̂t′θt(−Sint)

〉
S0

= −i1
2

∫
t1,t2

Bt1,t2

〈
θ̂t1 θ̂t2 cos(θt1 − θt2)θ̂t′θt

〉
S0

(2.21)

After derivation (appendix A.1) the function in frequency space is

R(1)
ω = R2

ω

∫
ω1

Rω1

[
Bv
ω1
−Bv

ω−ω1

]
= R2

ω

∫
t

RtBt cos vt (eiωt − 1) (2.22)
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where Bv
ω = 1

2
(Bω+v +Bω−v). and the renormalized η up to first order is

1

ηR1
= lim

ω→0
(−iω)R(1)

ω = lim
ω→0

−iω
(−iω)2η2

∫
t

RtBt cos vt (iωt) =
~

2πη2
log(1 + ω2

c/v
2)

= −~ log v/ωc
πη2

+O(v) (2.23)

where ωc = η/m is the high frequency cutoff. Using the same procedureR
(2)
t,t′ = i

2

〈
θ̂t′θt(Sint)

2
〉

(appendix A.2) we get

R(2)
ω = R2

ω

(
−1

2

∫
t

RtBt cos vt (eiωt − 1) C̃t +

∫
t

R
(1)
t Bt cos vt (eiωt − 1)+

Rω

[∫
t

RtBt cos vt (eiωt − 1)

]2

−
∫
t1,t2

Rt1Bt1Bt2 sin vt1 sin vt2(1− eiωt1)t1

)
(2.24)

with C̃
(1)
τ = 2(C

(1)
t=0 − C(1)

t ). The renormalized η to second order

1

ηR2
=

1

η
− ~
πη2

log v/ωc +
~2

π2η3
(log2 v/ωc + b0 log v/ωc) (2.25)

where b0 depends on the order of limits taken in the last expression, as explained in the

following section.

2.4.2 Equilibrium and nonequilibrium limits

Taking into consideration the first three terms in the above expression for R
(2)
ω we find

1

ηR2
=

1

η
− ~
πη2

log v/ωc +
~2

π2η3
(log2 v/ωc + b log v/ωc) (2.26)

The contribution of the forth term is unique since it depends on the order of limits taken.

In a ’nonequilibrium’ we need to derive the dissipation term in presence of the external force

E. As defined in 2.16 we first take ω → 0 and then treat the field E as our RG cutoff, taking

12



into consideration its logarithmic diverging contribution. The expression is then

1

η2
lim
v→0

lim
ω→0

1

iω

∫
t1,t2

Rt1Bt1Bt2 sin vt1 sin vt2(1− eiωt1)t1 =

− 1

η3
lim
v→0

∫
t1

Rt1Bt1 sin vt1 t
2
1

∫
t2

Rt2Bt2 sin vt2 = lim
v→0

~2

π2η3

∫ ∞
sin(vt1)×

∫ ∞
sin(vt2)/t22 =

lim
v→0

~2

π2η3

1

v
× v log v +O(v) =

~2

π2η3
log v (2.27)

With this contribution we find b = 0. If instead we consider an equilibrium order of limits

we take

lim
ω→0

lim
v→0

sin(vt1) sin(vt2) = 0 (2.28)

and 2.27 vanishes. In this case b = −1 which recovers the known equilibrium results [17].

2.4.3 Perturbation in correlation function

The perturbative correlation function is similarly defined C
(1)
τ = 〈θt′θt(−Sint)〉S0

C
(1)
t,t′ = −1

2

∫
t1,t2

Bt1,t2

〈
θ̂t1 θ̂t2 cos(θt1 − θt2)θt′θt

〉
=∫

t1,t2

Bt1,t2 cos v(t1 − t2)Rt,t1Rt′,t2 (2.29)

In Fourier space

C(1)
ω = |Rω|2Bv

ω (2.30)

because C
(1)
τ=0 diverges it is useful to evaluate C̃t,t′ = 〈[θt − θt′ ]2〉 which to 1st order is, with

τ = t− t′ (τ � 1/ωc)

C̃(1)
τ =

∫
ω

Bv
ω |Rω|2 (1− cosωτ) ≈ 2~

πη


log(ητ/m) τ < 1/v

πvτ/2 1/v < τ

. (2.31)

We can confirm that for v = 0 in that order of η FDT is valid as

C(1)
ω |v=0 = ImR(ω)~ sign(ω) (2.32)

13



2.5 Langevin Equation

The semiclassical action corresponds to the Langevin equation

mθ̈t + ηθ̇t = ξxt cos θt + ξyt sin θt + E (2.33)〈
ξiωξ

j
ω′

〉
= Bωδ(ω + ω′)δij

〈
ξit
〉

= 0

Where the noise term ξiω has a Gaussian weight. The MSR [35] method relates this Langevin

equation and the semi-classical action Eq. (2.18). The partition function describing the

Langevin equation is

Z =

∫
D[θ, ξ] δ

(
mθ̈t + ηθ̇t − ξxt cos θt − ξy sin θt − E

)
e−|ξω |

2/2B(ω) (2.34)

Introducing the ’quantum’ field θ̂ by δ(X) =
∫ D[θ̂]eiθ̂tXt , and averaging over the noise field ξi

will result in the semi classical partition function Z =
∫ D[θ, θ̂]e−S[θ,θ̂] where S[θ, θ̂] = S0+Sint

is given by Eq. (2.18).

2.5.1 Numerical solution of the Langevin Equation

We solve the above Langevin equation numerically. The time is discretize to t = T/N ×
(1, 2, ...N), with T the total time span of system. The noise term ξit is generated numerically

using a discrete Fourier transform of ξiω =
√
BωTRi where Ri is a unit white Gaussian noise.

The correlation function linearity requires introducing a high frequency cutoff τ0. We choose

the cutoff to be in Lorenzian form Bω = ~η|ω|/[1 + ω2τ 2
0 ], in the following section we explain

the importance of this choice.

We solve the equation in iterative procedure. Using the convolution form

θt =

∫
t′
Rt,t′ [ξ

x
t′ cos θt′ − ξyt′ sin θt′ − E] (2.35)

starting with an arbitrary configuration of θ
(0)
t we calculate the equation RHS to find a new

θ
(1)
t . We repeat the procedure n times until the expression is saturated when θ

(n)
t = θ

(n+1)
t .

14



This procedure is improved if instead of taking the convolution result as the next order θt

we use some mixing of that result and of the previous θt configuration in the form θ
(m)
t =

(1− β)θ
(m−1)
t + β ×RHS where β is mixing parameter. Typically n would be in order of 105

and β = 0.1.

2.5.2 Fluctuation dissipation relation and cutoff

The fluctuation dissipation relation requires ImRω = ~sign(ω)Bω. Adding cutoff τ0 to the

noise term Bω requires adding it also to Rω. Following [36] we choose

R−1
ω = −mω2 − iωη

1− iωτ0

= −mω2 + δR−1
ω (2.36)

This choice of cutoff has the property that both Rω and its inverse have no poles in the upper

half plane. This property is required to ensure there is no causality breaking, the interaction

cannot influence either the particle’s past nor the environment’s past. In the time domain

this variant of the retarded functions rapidly oscillates for τ0 → 0.

Rτ = Θ(τ)
1

η

{
1−

[
1− x2

2x
sin(xt/2τ0) + cos(xt/2τ0)

]
e−t/2τ0

}
x =

√
4ητ0

m
− 1. (2.37)

Fluctuation dissipation is satisfied for the correlation function

Bω =
~η |ω|

1 + ω2τ 2
0

. (2.38)

With this choice the Langevin equation takes the following form

mθ̈t = ξxt cos θt + ξyt sin θt + E + ∆t (2.39)

∆t =
η

τ 2
0

∫ t

−∞
sin[θt − θt′ ]e−(t−t′)/τ0dt′,

where ∆t is a correction term define by the term δR−1
ω in the response function of Eq. (2.36)

as
∫
t′
δR−1

t,t′ [ξ
x
t′ cos θt′ + ξyt′ sin θt′ + E] = − ∫

ω
mω2∆ω

In the numerical system we now have four time scales, the two numerical time scales,

∆τ = T/N the time segment and T the time span, and the two physical high frequency

15



cutoffs, τ0 cutoff for the noise and ωc mass cutoff. The region of interest where the velocity

vR =
〈
θ̇t

〉
is between those time scales ∆τ � τ0 < 1/ωc � 1/vR ∼ 1/v < T . The inequality

τ0 < 1/ωc is useful since we compare the numerical result to an asymptotic result in which

ωc rather than 1/τ0 is the high frequency cutoff.

2.5.3 Dissipation parameter

With the result for θt we can find the renormalized 1/ηR = dvR/dE with vR =
〈
θ̇t

〉
where

the average 〈·〉 reflects an average on both the time domain t > 1/ωc and on numerous

realizations of the noise.

In the left panel of Fig.2 our numerical solution for the Langevin equation is shown, with

a fit to the second order from both the nonequilibrium result b0 = 0 and the equilibrium

b0 = −1. It is shown that the first is a better fit for the Langevin equation. When 1/v

approaches the simulation time span T the numerics become unreliable, as T becomes the

effective low frequency cutoff instead of the external field, and a plateau is observed at low

E. In the right panel of Fig.2 we plot the the same data after subtraction of first order

asymptotic results of Eq. (2.24).
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Figure 2: Left panel: Velocity-field relation for Eq. (2.39) with η = 30~/π, ωc = 100/τ0

and τ0 = 20∆τ . Here N = 215, ∆τ = 1/20. The circles are numerical data, the full red

line is a 1st order perturbation in 1/η, the dashed lower red line is its logarithmic expansion

for large ln v/ωc and the dashed upper (black) line includes the 2nd order logarithmic term,

corresponding to Eq. (2.25) for b0 = 0.

Right panel: The same data after subtracting the 1st order terms, i.e. E(2)

ηv
= E

ηv
− 1 −

~
πη

(ln v
ωc
− 1). An additional dash-dotted line corresponds to b0 = −1, which is a worse fit to

the data then b0 = 0 (dashed upper line). Note that the numerical data displays E/v rather

then dE/dv, hence Eq. (2.23) acquires a −1 term.

2.5.4 Fluctuation

With the numerical results for θτ we can create the correlation function C̃
(1)
τ = 〈[θτ − θ0]2〉,

the first order perturbation for this correlation function is given in Eq. (2.31). In Fig.3 we

plot the correlation function as a function of the time separation τ for the same parameters

as in Fig.2, with and without a finite field. It is shown that for zero field the correlation has

a subdiffusion logarithmic behavior while for finite force the correlation has a diffusion (∼ τ)

behavior.
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Figure 3: Left panel: The correlation function Eq. (2.32). and the asymptotic results of

Eq. (2.32) (red) for E = 0. Right panel: The correlation function as a function of time

(Blue) and the asymptotic results of Eq. (2.31) for E/η = 1 and τ0 = 1.

2.6 Dirty metal environment

A useful model for a noise producing environment is the CL [13] framework in which the

environment is a set of oscillators, all linearly coupled to the particle. This is the environment

we have used in the previous section. A more general way to characterize the environment is

by its dielectric function, which for a dirty metal (DM) at low wavevector q and low frequency

ω, is

1

ε(q, ω)
≈ −iω +Dq2

4πσ
(2.40)

where D, σ are the diffusion coefficient and the conductivity, respectively.

In this section an equation of motion for a particle on the ring where the environment is

that of a dirty metal is derived. The particle at position r(t) on the ring has a charge density

ρ(r, t) = eδ3(r − r(t)), the energy in the system is U =
∫
r
φ(r, t)ρ(r, t), where φ(r, t) is the

potential. This potential is produced by the polarization of the environment by the particle,
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in momentum and frequency variables

φ(q, ω) = α(q, ω)ρ(q, ω) (2.41)

where the response function is defined in terms of dielectric function ε(q, ω)

α(q, ω) =
4π

q2ε(q, ω)
. (2.42)

We assume ε(q, ω) of the form (2.40). The retarded potential at the particle position r(t) is

given as

φ(r(t), t) =

∫
t′

∫
r′
α(r(t)− r′, t− t′)ρ(r′, t′) = e

∫
t′
α(r(t)− r(t′), t− t′) (2.43)

The force is F = −e∇φ, its projection on the azimuthal direction is F‖(t, θ(t)) = − e
R
∂θφ(t, θt),

hence the equation of motion for the particle is

mRθ̈(t) = − e
R
∂θtφ(θt, t) + f(θt, t) (2.44)

where f(θt, t) is a fluctuating force with zero average. The response in the position and time

domains is

α(X = r(t)− r(t′), τ = t− t′) =
1

σ

∫ 1/l

q

∫
ω

(−iω
q2

+D

)
e−iq·X−iωτ (2.45)

The diffusion term yields δ(τ), hence it is X independent and does not contribute to the

force. With an elastic mean free path as a cutoff on the momentum q . 1/l the first term is

α(X(τ), τ) =
1

4πσ

1√
X2 + l2

∫
ω

(−iω)e−iωτ

The displacement vector on a ring is |X| =
∣∣∣2R sin

(
θt−θt′

2

)∣∣∣. With the Fourier expansion(
4r2 sin2(z/2) + 1

)−1/2
= 1−∑∞n=1 αn sin2(nz/2) where r = R/l, the azimuthal drag force is

F‖(θt, t) = − e
R
∂θtφ(θt, t) = −e

2

R
∂θt

∫
t′
α(θt − θt′ , t− t′) = (2.46)

e2

4πσ

1

Rl

∫
t′

[∑
n

n

2
αn sin (n(θt − θt′))

]∫
ω

(−iω)e−iω(t−t′)
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The frequency integral equals −∂t′δ(t− t′), integration by part of the last equation and the

relation
∑

n n
2αn = 2r2 yields

F‖(θt, t) = − e2

8πσ

1

Rl

∑
n

n2αnθ̇t = − e2

4πσ

r2

Rl
θ̇t ≡ −ηRθ̇t (2.47)

This identifies the friction coefficient η = e2

4πσ
1
l3

. The Fluctuation dissipation theorem at zero

temperature determines the symmetrized correlation function of φ

Kφ(q, ω) = −~ sign(ω)Imα(q, ω) (2.48)

Kφ (θt − θt′ , t− t′) =
~

4πσl

[
1−

∑
n

αn sin2

(
θt − θt′

2
n

)]∫
ω

|ω| e−iω(t−t′)

The Sint term in the action 2.18 is the correlation function of the force, is a double differen-

tiation on Kφ

Sint (θt − θt′ , t− t′) =
e2

R2
∂θt∂θt′Kφ (θt − θt′ , t− t′) = (2.49)

~η
2r2

∑
n

n2αn cos (n(θt − θt′))Bt,t′

This correlation is satisfied if the noise terms are as in the following Langevin equation

mRθ̈t + ηRθ̇t =
∑
n

√
αnn√
2r
{ξn,xt cosnθt + ξn,yt sinnθt}+ E (2.50)〈

ξn,iω ξm,iω′

〉
= ~η |ω| δ(ω − ω′)δnm i = x, y

and an external field E is added. Note that in the limit r � 1 the CL equation (2.33), is

reached with α1 = 2r2 and αn>1 = 0.

2.6.1 Normalized dissipation

The normalized dissipation parameter as in 2.21 is,

R
(1)
t,t′ = i

〈
θ̂t′θt(−Sint)

〉
S0

=
1

2i

∑
n

αnn
2

2r2

∫
t1,t2

Bt1,t2

〈
θ̂t1 θ̂t2 cosn(θt1 − θt2)θ̂t′θt

〉
S0

=
∑
n

αnn
4

2r2
R2
ω

∫
t

RtBt cosnvt (eiωt − 1) (2.51)
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the time integral gives ∼ log nv/ωc = log v/ωc + const and the dissipation parameter in first

order is

1

ηR1
= − ~

πη2
log v/ωc

∑
n

αnn
4

2r2
+O(v0

)
= − ~

πη2
(1 + 9r2) log v/ωc +O(v0

)
(2.52)

where we have used
∑

n
αnn4

2r2
= ∂4

z

(
4r2 sin2(z/2) + 1

)−1/2 |z=0 . Similar result for the dissi-

pation in a dirty metal environment were derive by variational method [11].

2.6.2 Fluctuations

A first order approximation for the correlation functions at E = 0 shows that the results are

equal to those of approximation of Eq.(2.31) with a different prefactor, so that for τ � 1

C̃τ =
2~
πηr2

logωcτ τ � 1/ωc (2.53)

The numerical solution of this equation is done with a procedure similar to that in section

2.5. In this case a set of noise terms are created for each realization in the sum over n with

the following results

2.7 Perturbation for the quantum action

In order to have a perturbation expansion in the full action of Eq. (2.14) one needs to

identify a Gaussian term S0 within the action, then a perturbation can be done for around

S0. Similar to the classical case perturbation in the noise term is of interest, here we also

need to consider the non-Gaussian part of the retarded term in the action. A simplification

of the action can be done by the use of the retarded function expression

R−1
t,t′ = δ(t− t′)[m∂t∂t′ + η∂t′ ] (2.54)

R−1
t,t′ sin(

~
2
θ̂t) cos(

~
2
θ̂t′) sin(θt′ − θt) = δ(t− t′)[m ˙̂

θtθ̇t +
η

~
sin(~θ̂t)θ̇t]
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Figure 4: The correlation functions as a function of time (bold) and the perturbation (2.53)

(thin) for r = 10x , x = −1,−0.5, 0, 0.5, 1, E = 0, ~/(πη) = 10−2. The curves are from the

highest to the lowest for increasingly larger r.

with that the action becomes

SK = i

∫
t

[m
˙̂
θtθ̇t +

η

~
sin(~θ̂t)θ̇t] +

2

~2

∫
t,t′
Bt,t′ sin(

~
2
θ̂t) sin(

~
2
θ̂t′) cos(θt′ − θt) (2.55)

It is useful to use the two-cutoff response as in Eq. (2.36) with R−1
ω = −mω2 + δR−1

ω , where

δR−1
ω = −iωη

1−iωτ0 , hence

δR−1
t,t′ = ∂t′

∫
ω

−η
1− iωτ0

e−iω(t−t′) = − η
τ0

∂t′ [e
−(t−t′)/τ0Θ(t− t′)] =

η

τ0

e−(t−t′)/τ0Θ(t− t′)∂t′ (2.56)
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for τ0 → 0 we have δR−1
t,t′ → ηδ(t− t′)∂t′ . This operator identity is satisfied for any function

decaying faster then e|t
′|/τ0 at t′ → −∞. Adding the external force E the action is then

SK = S0 + Sint + Sc

S0 = i

∫
t,t′
θ̂tR

−1
tt′ θt′ − iE

∫
t

θ̂t = i

∫
t,t′
θ̂tR

−1
tt′ δθt′

Sint =
2

~2

∫
t,t′
Bt,t′ sin(

~
2
θ̂t) sin(

~
2
θ̂t′) cos(θt′ − θt)

Sc =
2i

~

∫
t,t′
δR−1

t,t′ [sin(
~
2
θ̂t) cos(

~
2
θ̂t′) sin(θt′ − θt)− ~

2
θ̂tθt′ ] (2.57)

for τ0 → 0 Sc reduces back to iη
~

∫
t
[sin(~θ̂t)−~θ̂t]θ̇t− as in Eq. (2.55) where t− in the last line is

infinitesimal below t so that the retarded nature of R−1
t,t′ is maintained. For example averaging

over perturbation, which are the non-connected terms has to vanish 〈Sc〉S0
∼ Rt=0− = 0, this

is a crucial point for the perturbation expansion in the following. The bare Green’s function

is now as in the classical perturbation of Eq. (2.19).

2.7.1 Perturbations: 1st order

The retarded Green’s function for the first order in Sint follows a similar procedure to that

of the classical case (appendix A.1)

R
(1)
t,t′ =

−2i

~

〈
θ̂t′θt

∫
t1,t2

Bt1,t2 sin(
~
2
θ̂t) sin(

~
2
θ̂t′) cos(θt1 − θt2)

〉
S0

=

−2i

~
∑

σ,σ′,µ=±

σσ′

24
∂α1∂α2|0

∫
t1,t2

Bt1,t2

〈
ei

~
2

(α1θ̂t′+α2θt+σθ̂t1+σ′θ̂t2 )+iµ(θt1−θt2 )
〉
S0

=

= −2

~

∫
t1,t2

Bt1,t2 sin(
~
2
Rt1,t2)[Rt1,t′ −Rt2,t′ ]Rt,t1 cos v(t1 − t2) (2.58)

In frequency space the retarded Green’s function is the same as the classical with the re-

placement ~
2
Rt → sin(~

2
Rt)

R(1)
ω = R2

ω

2

~

∫
t

sin(
~
2
Rt)Bt cos vt (eiωt − 1) (2.59)
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and the renormalized dissipation coefficient η up to first order is

1

ηR1
= lim

ω→0
(−iω)R(1)

ω = lim
ω→0

−iω
(−iω)2η2

2

~

∫
t

sin(
~
2
Rt)Bt cos vt (iωt) =

2

πη
sin(

~
2η

)

∫ v

ωc

dt

t
+O(v) = − 2

πη
sin(

~
2η

) log v/ωc +O(v) (2.60)

so at the semi-classical limit which is equivalent to large η limit we retrieve the previous

result (2.23). First order perturbation in Sc vanish〈
θ̂t′θtSc

〉
S0

=

〈
θ̂t′θt

iη

~

∫
t1

[sin(~θ̂t1)− ~θ̂t1 ]θ̇t−1

〉
S0

= 0 (2.61)

since the Green’s function of the types 〈θθ〉S0
and

〈
θ̂θ̂
〉
S0

vanish, i.e. the only possible

connected term is composed of multiplication of the Green’s function of the type
〈
θ̂θ
〉

.

Expanding the sin in the expression the first order vanishes with the second term and the

expression is ∼
〈
θ̂t′θtθ̇t−1 [−~3θ̂3

t1
+ 1

5
~5θ̂5

t1
+ ...]

〉
S0

separating the angular fields to pairs (Wick

extraction) it is clear that there exists no term without
〈
θ̂θ̂
〉
S0

= 0. With the same reasoning〈
θ̂t′θtS

2
c

〉
S0

= 0. The mixed term
〈
θ̂t′θtScSint

〉
S0

does not vanish, but as Sc contribute ∼ ~3

at least and Sint ∼ ~ this term is of O(~3) where our perturbation will only be to O(~2).

2.7.2 Perturbations: 2nd order

In section (B.1) the second order perturbation R
(2)
t,t′ = i

2

〈
θ̂t′θtS

2
int

〉
S0

of the retarded Green’s

function and the dissipation parameter are derived,

1

ηR2
=

i

2~4η2

∂

∂v

∑
εi,µ=±

∫
t2,t3,t4

Bt1,t2Bt3,t4ε2ε3ε4A2 sin[v(t1 − t2) + µv(t3 − t4)]

A2 = exp{i~
2
ε2(Rt1,t2 + µRt3,t2 − µRt4,t2) + i

~
2
ε3(Rt1,t3 −Rt2,t3 − µRt4,t3)} ×

exp{i~
2
ε4(Rt1,t4 −Rt2,t4 + µRt3,t4)} (2.62)

we could not compute this expression with the retarded function Rτ = 1
η
(1 − e−ητ/m)Θ(τ).

In general we have two high frequency cutoffs m/η, τ0 in Eq. (2.36) and we assume that the
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resulting small frequency expression is independent of their ratio. The strict limit m → 0

leads to large oscillations at t→ 0 so we do not attempt this limit. We define a formal cutoff

time τ1(m/η, τ0) for Rτ and we first take the formal limit τ1 → 0; we keep, however, the

cutoff τ0 in B(ω), Eq. (2.38). In this limit Rτ → 1
η
Θ(t)e−δt where δ → 0+ to ensure the

retarded nature (poles of 1/(ω + iδ)). With that we find (section B.1)

1

ηR
=

1

ηR
− 2

πη
sin(

~
2η

)[ln(vτ0) + 1] +
4

π2~
sin2(

~
2η

) sin(
~
η

) · [ln2(vτ0) + 3 ln(vτ0)] (2.63)

Here 1/ηR2 is calculated in a formal limit τ1 → 0. Note that the result is finite, and in

fact even ∂τ1 at τ1 → 0 is finite. Instead of the calculation of (2.62) for τ1 6= 0 we consider

now the general structure for perturbations to 2nd order which has 3 terms: ln terms for

both 1st and 2nd order terms, and ln2 only from the 2nd order,

1

ηR
=

1

η
+ a(η, τ0v, τ1v) ln[ā(η, τ0v, τ1v)τ0v] + b(η, τ0v, τ1v) ln2[b̄(η, τ0v, τ1v)τ0v]

+c(η, τ0v, τ1v) ln[c̄(η, τ0v, τ1v)τ0v] (2.64)

Note that τ1 = τ1(m/η, τ0) and τ1(m/η, τ0 = 0) = m/η. We assume now cutoff universality,

i.e. one can take the limit of both τ0,m/η → 0 with any fixed ratio without affecting the

result, however, the case τ0 6= 0, m/η → 0 is avoided as it leads to diverging oscillations in

(2.37). Note that τ1 = 0, τ0 6= 0 is not realized by any τ0, m/η, yet, we use the mathematical

fact that this limit is well defined. Hence we expand the a, b, c, ā, b̄, c̄ functions in τ1. Since

τ0 → 0 is well defined, there are no terms ∼ τ1
τ0

in a, b, c and no ∼ ( τ1
τ0

)2 in ā, b̄, c̄. We use the

known limit τ1 = 0 to identify the coefficients

1

ηR
=

1

η
+ a(η){ln[τ0v + ā2(η)τ1v] + 1}+

b(η){ln2[τ0v + b̄2(η)τ1v] + 3 ln[τ0v + c̄2(η)τ1v] + 1}
a(η) =

−2

πη
sin(

~
2η

)

b(η) =
4

π2~
sin2(

~
2η

) sin(
~
η

) (2.65)
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In short, this form reproduces the known τ1 = 0 limit, and also allows for a finite τ1 consistent

with the general form of τ0v, τ1v � 1. In particular there are no terms ∼ ln τ1v when τ0 6= 0

since they diverge at τ1 → 0. Now take the limit τ0 = 0, τ1 = m/η of a single cutoff

1

ηR
=

1

η
+ a(η){ln[ā2(η)

m

η
v] + 1}+ b(η){ln2[b̄2(η)

m

η
v] + 3 ln[c̄2(η)

m

η
v] + 1} (2.66)

The ā2(η), b̄2(η), c̄2(η) are shifts of the classical cutoff, thus they should not depend on the

quantum ~/η, hence these are constants. Another way to see this, is by ηR(m
η
v = 1) = η so

that

ln ā2(η) + 1 . 1

ln2 b̄2(η) + 3 ln c̄2(η) + 1 . 1 (2.67)

ηR is up to ln accuracy, so matching at vm/η = 1 can miss a O(1) terms. In fact 1st order

terms has ln[ā2(η)] = −1 . Therefore

1

ηR
=

1

η
− 2

πη
sin(

~
2η

) ln[
m

η
v] +

4

π2~
sin2(

~
2η

) sin(
~
η

){ln2[
m

η
v] + b0 ln[

m

η
v]} (2.68)

with b0 . 1.The main conclusion is that there is a new small parameter in the perturbation

series, sin( ~
2η

). The perturbation is formally in R2n−1Bn/η2 ∼ ~n/ηn+1 for large η, but in the

present scheme R2n−1 factors in front of the logarithmic term become periodic functions.

2.8 Renormalization Group treatment

We performed in section (2.7) a perturbative expansion of the action with respect to Sint, Sc

to compute ηR. The small 1/η form of each term is 1/ηn+1. The perturbative expansion of ηR

exhibits logarithmic divergences when E → 0, thus the velocity v = E/η provides a natural

low frequency cutoff for this divergences, and the mass provides a high frequency cutoff at

ωc = η/M , or alternatively τ0 provide this cutoff. The expansion terms can be classified as

n-loops RG expansion if they satisfy the Lie’s equation [37]

d

d ln v
gR(v/ωc, g) =

d

d ln ξ
gR(ξ, gR(v/ωc, g))|ξ=1 (2.69)

26



The renormalization procedure consists of a rescaling of the frequency cutoff v. The high

frequency cutoff ωc is replaced by v as the frequencies in the range ωc to v have been integrated

out to produce the effective dissipation parameter ηR(v). ηR(v) is the only parameter that

is renormalized in the procedure, its bare value corresponds to η = ηR(ωc).

In the limit of large η which is the same as the semiclassical result of Eq. (2.25), we can

express Eq. (2.68) in terms of the small parameter g = ~
πη

and gR = ~
πηR(E)

and obtain

gR = g − g2 ln[v/ωc] + g3
{

ln2[v/ωc] + b0 ln[v/ωc]
}

(2.70)

This satisfy Lie’s equation. A direct way to see that is to define the β function in two ways,

via a derivative at ln = 0 with g → gR

β =
dgR

−d ln v
= (gR)2 − b0(gR)3 = (g − g2 ln(v/ωc))

2 − b0g
3 +O(g4) (2.71)

and the other way is a direct derivative of (2.70)

β =
dgR

−d ln v
= g2 − g3(2 ln v/ωc + b0) (2.72)

and check that the two results coincide.

For the quantum theory, beyond large η we find, due to the periodicity of the action in

the angle variables, that the R2n−1 factors in front of the logarithmic terms have become a

periodic functions. We note that in (2.68) g = 2
π

sin ~
2η

acts as an unexpected small parameter

for the expansion. Since all divergences vanish when g = 0 it raises the interesting possibility

that g = 0 be viewed as a RG fixed point. For that we need to find a renormalized coupling

which obeys multiplicative RG, the simplest choice being gR = 2
π

sin ~
2ηR

. The question is

then whether all ln terms of the β-function β = −E∂EgR can be written in terms of gR.

Although the non-periodic 1/η factor in (2.68) appears at first problematic, we propose that

resummation from higher loops, which allows for higher order terms O
(

1
η4

)
changes the 1-

loop term in (2.68) by 1
η
→ sin 1

η
, so that by taking a sine of both sides it yields to order
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g3

sin
~

2ηR
= sin

~
2η
− 2

π
sin2(

~
2η

) cos(
~
2η

) ln[
v

ωc
] +

4

π2
sin3 ~

2η
cos2 ~

2η
{ln2[

v

ωc
] + b0 ln[

v

ωc
]} (2.73)

with the above definition for g, near g = 0 fixed points

gR = g ± g2 ln(v/ωc) + g3[ln2(v/ωc) + b0 ln(v/ωc)] (2.74)

where ± refers to g = 0 with cos 1
η

= ±1. Therefore β(gR) = ∓(gR)2 − b0(gR)3 +O((gR)4
)
.

2.8.1 Alternative response functions

To further motivate the last proposal we consider the response function R̄t,t′ = i 2
~

〈
θt sin(~

2
θ̂t′)
〉

.

Physically, e±
~
2
iθ̂t′ corresponds to an electric field pulse δE(t) = ±δ(t− t′) or equivalently a

rapid change of flux by ±1
2 , therefore R̄t,t′ corresponds to the difference in response to these

two flux pulses. For R̄t,t′ the 1-loop term is fully periodic with ~
2η
→ sin( ~

2η
) as in Eq. (2.68).

We note that there are many other operators that have vanishing perturbations at g = 0

to 2nd order in Sint, Sc. E.g we can define an effective ηR using the dissipation term in Eq.

(2.57) for which the relevant response function is
〈
θt sin(~θ̂t′)

〉
. Another option is to consider

the response to an ac field that rotates in resonance with the particle, i.e. Eac(sin vt,− cos vt),

in addition to the DC field E. The Hamiltonian is then

Hac = Eac{sin vt cos[vt+ δθ(t)]− cos vt sin[vt+ δθ(t)]} = −Eac sin δθ(t) (2.75)

and the Keldysh action Sac = Eac[sin δθ
+(t) − sin δθ−(t)] = 2Eac cos δθt sin ~

2
θ̂t and the re-

sponse function is

∂v

∂Eac
= lim

t−t′→∞
¯̄Rt,t′ ⇒ ¯̄Rt,t′ = 2i〈θt cos δθt′ sin

~
2
θ̂t′〉 (2.76)

In both cases one can compute an RG equation as in Eq. (2.74). With the above reasoning

we suggest that g = 0 are exact zeroes of the perturbation expansion and requiring an RG

structure leads then to the result (2.74).
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Eq. (2.74) yields fixed points at ~
2ηn

= nπ with n = 1, 2, 3, ... that are attractive at η > ηn

and repulsive at η < ηn, i.e. the flow of η 6= ηn is always to smaller η. However at these fixed

points a Gaussian evaluation yields the correlation for large t

〈cos θt cos θ0〉 =
1

2
e−

1
2
C̃t ∼ e−

~
πη

logωct = t−2n. (2.77)

Η
Ñ�2Π0

Figure 5: The flow diagram for η. For η > ηc = ~/(2π) the dissipation parameter flows to ηc.

There is a theorem for the lattice model [38] where the equilibrium action with mass

related cutoff is replaced by an action on a lattice resulting in an XY model with long

range interactions. The theorem states [38] that 〈cos θt cos θ0〉 ∼ 1/t2; this result was also

derived in first order in η [10, 11]. The range η > η1 has an RG flow to η1 and is therefore

consistent with the theorem. The hypothesis of Gaussian fixed points corresponding to n ≥ 2

is inconsistent with the theorem, i.e. 〈cos θt cos θ0〉 becomes a relevant operator at the n ≤ 2

points rendering them unstable. For η < η1 the system may have non-gaussian fixed points

or a line of fixed points as hinted by the small η perturbation [10, 11].

2.9 Conclusions

We conclude that for η > η1 ≡ ηR the SEB satisfies the quantization∫ 1

0

C2
0(N0)

C2
g

Rq(N0)dN0 =
h

e2
. (2.78)

In particular, when η/~ & 1 we have from the known M∗/M ∼ eπη/~ [7–11] and from Eq.

(2.8) that C0/Cg = 1 +O(e−πη/~). We expect Rq to be independent of N0 at large η, hence

Rq =
h

e2
[1 +O(e−πη/~)] (2.79)
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similar to the Nc = 1 case [5].

The conductance for the ring can be defined by the voltage around the ring 2πE/e and

the current e〈θ̇〉/2π, hence we expect the conductance for η > ηR to be:

Gring =
e2

4π2ηR
=
e2

h
. (2.80)

In section 5 we propose an experiment to verify this result.

2.9.1 Intuitive argument for the quantization

The special value ηR = ~/(2π) has a topological interpretation as a Thouless charge pump

[39]. Consider a slow change of φx by one unit with ~φ̇x = ηR〈θ̇〉. For this special value

ηR = ~/(2π) the total change in the position of the particle
∫
t
〈θ̇〉dt = 2π, i.e. the particle

comes back to the same position on the ring and a unit charge has been transported. Such

quantization has been shown for cases where the spectrum has a gap [39], though quantized

charge transport was shown also in cases without a gap [40, 41]. The quantized ηR also

results from arguing that there should be a unique frequency ωE = v as E → 0, as suggested

by linear response.
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3 Equilibrium study of particle dissipation

In this section we study a particle on ring in equilibrium in the presence of a dissipative

CL environment and derive the effective dissipation parameter ηR dependence on the bare η

parameter, on the external flux φx and on the temperature.

Our aim is to calculate the particle equilibrium Green’s function Kω =
〈|θω|2〉. Following

section 2.2 we define the low frequency expansion terms of Kω

Kω = K0(φx) + |ω|K1(φx) +O(ω2
)

(3.1)

The first order is the effective mass K0(φx) = ~/M∗(φx) and we have seen that by taking

an average over the flux this term vanishes
∫ 1

0
K0(φx)dφx = 0. The interest is in the second

term ~/ηR =
∫ 1

0
K1(φx)dφx, for which in section 2.8 we found its normalization dependence

on the bare 1/η parameter. We also expect that the important contribution for the effective

dissipation term is around the degeneracy point φx = 1/2.

In this section we use the Equilibrium Matsubara formalism to calculate Kω(φx) with

two types of perturbation schemes as well as by numerical MC methods, with the aim of

identifying K1(φx) in order to identify the quantization of the noise described in the previous

section, Eq. (2.7). We expect that for sufficiently low temperatures the flux integrated linear

response
∫ 1

0
K1(φx) will be universal for any value of η > ~/(2π).

In section 3.1 we define the action model for the system and the Green’s function, in

section 3.2 we calculate the Green’s function perturbatively up to first order for both small

and large dissipation parameter. In section 3.3 we extend the perturbative calculation for

finite T and taking into consideration all windings.

We wish to solve this model numerically using the MC methods with the aim to identify

numerically K1(φx). In section 3.4 we describe the numerical MC method used to solve the

model, and our chosen implementation of the numerics, and its limitation. In 3.5 we show

and discuss the MC result and its limitation.
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3.1 Model action

The time dependent angular position θ
(m)
τ of a particle on a ring has in general a winding m

to describe the number of times the particle encircles the ring so that θ
(m)
τ = θτ + 2πmτT ,

where θ0 = θ1/T has a periodic boundary condition. In presence of external flux φx (in units

of flux quantum hc/e) the partition sum has the form

Z =
∑
m

e2πimφx

∫
D[θ]e−S

(m)[θ] (3.2)

With the action describing a CL environment

S(m)[θ] =
1

2
M

∫ 1/T

0

(θ̇(m)
τ )2dτ − 2

∫ 1/T

0

∫ 1/T

0

gτ,τ ′ sin
2

(
θ

(m)
τ − θ(m)

τ ′

2

)
(3.3)

gτ = −α
2

(πT )2

sin2 πTτ
τ 6= 0

where α = η/π with our previous η (α notation is conventional here).

3.2 Perturbation scheme

Here we will consider a general perturbation scheme for any partition function Z =
∫
D[θ]

e−S,

with action S = S0 + Sint where

S0 =
1

2β

∑
ω

G−1
ω |θω|2 (3.4)

is a Gaussian action and Gω = ω2K̃ω is zero order Matsubara Green’s function. Expanding

in Sint, the Green’s function up to first order in the interaction parameter is

G(1)
ω =

∫
D[θ]
|θω|2 e−S0(1− Sint)∫
D[θ]

e−S0(1− Sint) =

Gω −
∫
D[θ]

e−S0
(|θω|2 −Gω

)
Sint∫

D[θ]
e−S0

+O(Sint)
2 (3.5)
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We used here
∫
D[θ]
|θω|2 e−S0/

∫
D[θ]

e−S0 = Gω. The second term in the numerator is the

disconnected term. It is convenient to derive this expression by derivation with Gω

Σ(1)
ω = −2

∂

∂Gω

〈Sint〉S0
= −2

∂

∂Gω

∫
D[θ]

e−S0Sint∫
D[θ]

e−S0
=

−G−2
ω

∫
D[θ]

e−S0 |θω|2 Sint∫
D[θ]

e−S0
+G−2

ω

∫
D[θ]

e−S0GωSint∫
D[θ]

e−S0
(3.6)

Where the first order Green’s function is

G(1)
ω = Gω +G2

ωΣ(1)
ω (3.7)

In the following subsections we calculate the Green’s function perturbation for the first

sector m = 0 with φx = 0 and for T = 0 for large α. We use here the convention for the

Matsubara integral as
∫
ω

= T
∑

ωn
and

∫
τ

=
∫ β

0
dτ , for T = 0 the integrals are

∫
ω

= 1
2π

∫∞
−∞ dω

and
∫
τ

=
∫∞
−∞ dτ .

3.2.1 Large α perturbation

To have perturbation in large α we add and subtract a dissipative term to S0 and Sint

respectively. The dissipation term is chosen such that in the limit of large α (which is

equivalent to the large ω) the Sint term vanished. Here we only consider the zero winding

section m = 0 and assume the result is flux independent, in section 3.5 this is justified

numerically. The action is

S0 =
1

2

∫
ω

[
Mω2 + πα |ω|] |θω|2

Sint = −2

∫
τ,τ ′

gτ,τ ′

(
sin2

(
θτ − θτ ′

2

)
−
(
θτ − θτ ′

2

)2
)

(3.8)

The bare Green’s function is Gω = Mω2 + πα |ω|. The first term in Sint is

〈Sint〉S0
= −2

∫
τ,τ ′

gτ,τ ′

〈
sin2

(
θτ − θτ ′

2

)〉
S0

= −
∫
τ,τ ′

gτ,τ ′(1− eGτ,τ ′−Gτ=0) =∫
τ

gτe
−

R
ω(1−cosωτ)Gω (3.9)
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The second term in the perturbation is a Gaussian term with 〈Sint〉 = −απ
2

∫
ω
|ω| 〈|θω|2〉0

=

−απ
2

∫
ω
η |ω|Gω. Hence to 1st order

Σ(1)
ω = −2

∂

∂Gω

〈Sint〉S0
= 2

∫
τ

(1− cosωτ)gτe
−

R
ω(1−cosωτ)Gω + πα |ω|

= −α
∫
τ

1− cosωτ

τ 2
e
−

R
ω′

1−cosω′τ
Mω′2+πα|ω′| + πα |ω| (3.10)

The integral in the exponent with ωc = η/M∫
ω

1− cosωτ

Mω2 + πα |ω| =
1

π2α

[
γ + log(τωc)− sin(τωc)Si(τωc)− cos(τωc)Ci(τωc) +

π

2
sin(τωc)

]
=

1

π2α

[
γ + log τωc +

1

(τωc)
2 +O(τ−4

)]
τωc � 1 (3.11)

For small frequencies we can take large time terms in the exponent

Σ1(ω) = −α
∫
τ

1− cosωτ

τ 2
(τωc)

−1/πη e−
γ

π2α = −αgα |ω|1+1/π2α ω−1/π2α
c

gα = 2 sin
1

2πα
e−

γ

π2αΓ(−1− 1

π2α
) > 0 for α > 1/π2 (3.12)

for α < 1/π2 this integral diverges for short times (this divergent is not real, for short time

the exponent is e−|τ |/2M , meaning there is no short times divergence). The first order Green’s

function for α > 1/π2

G(1)
ω =

1

Mω2 + πα |ω| − α
gαω

1+1/π2αω
−1/π2α
c

[Mω2 + πα |ω|]2 + πα
|ω|

[Mω2 + πα |ω|]2 (3.13)

expansion in large α gα |ω/ωc|1/π
2α = π − (1− log ω

ωc
)/(πα) +O(α−2)

G(1)
ω =

1

Mω2 + πα |ω| + α
|ω|
π

1− log ω
ωc

[Mω2 + πα |ω|]2 (3.14)

identify αR by limω→0 ωG1(ω)

1

αR
=

1

α
+

1

π2α2
(1− log

ω

ωc
) (3.15)

The RG equation which was derived at [42]

d(1/α̃)

d logω
= − 1

α̃2
α̃ = π2α (3.16)

34



3.3 Small α perturbation

In the previous section we considered only the zero sector m = 0, and φx = 0, for large α.

The small α perturbation can be solved for all winding and in finite φx. The action (3.4) can

be written as

S(m) =
1

2
M

∫ 1/T

0

θ̇2
τdτ + 2π2TMm2 +

∫∫ 1/T

0

g
(m)
τ,τ ′ cos (θτ − θτ ′) dτdτ ′ (3.17)

with g
(m)
τ = gτ cos(2πmτT ). In this expression we used the symmetry between θτ and θτ ′ in

the
∫ D[θ] integral. The action

Z =

∫
D[θ]e−S0

∑
m

e−2π2TMm2+2πiφxme−
RR 1/T

0 g
(m)

τ−τ ′ cos(θτ−θτ ′ )dτdτ ′ (3.18)

S0 =
1

2
M

∫ 1/T

0

θ̇2
τ dτ

First order perturbation in α where the bare Green’s function is Gω = 1/Mω2 and in time

domain Gτ = |τ | /2M .

Z =

∫
D[θ]

e−S0

∑
m

e−2π2TMm2+2iπmφx

[
1−

∫∫ 1/T

0

g
(m)
τ−τ ′ cos (θτ − θτ ′) dτdτ ′

]
(3.19)

The first order perturbation of the Green’s function

G(1)
ω = Gω +

∑
m e−2π2TMm2+2iπmφx

∫
D[θ]

e−S0
∫
τ,τ ′

g
(m)
τ−τ ′ cos (θτ − θτ ′)

[
Gω − |θω|2

]∑
m e−2π2TMm2+2iπmφx

∫
D[θ]

e−S0[θ]
=

Gω +G2
ω

∑
m e−2π2TMm2+2iπmφxΣ

(m)
ω∑

m e−2π2TMm2+2iπmφx
(3.20)

where Σ
(m)
ω is similar to the previous section where the bare Green’s function is

Σ(m)
ω = 2

∫ 1/2T

−1/2T

(1− cosωτ) cos(2πmτT )gτe
−

R
ω(1−cosωτ)Gω dτ (3.21)

We solve this integral considering the finite temperature. In Matsubara formalism the

integral for finite T turn to the summation
∫
ω
fω = T

∑∞
k=−∞ fωk , with ωk = 2πkT . The sum
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in the exponent

T
∑
ωk

Gωk(1− cosωkτ) =
T

M

∑
k 6=0

1− cos 2πTτk

4π2T 2k2
=

T

M

∑
k

1− cos 2πTτk

4π2T 2k2
− T

2M
τ 2 =

T

M

∫∫
τ

2πδ(2πTτ)− T

2M
τ 2 = |τ | /2M − Tτ 2/2M (3.22)

The expression for the first order perturbation

Σ(m)
ωk

= −2α

∫ 1/2T

0

dτ
π2T 2

sin2 πτT
cos 2πmτT (1− cosωkτ)e−τ(1−Tτ)/(2M)

G(1)
ωk

= Gωk +G2
ωk

∑
m e−2π2TMm2+2iπmφxΣ

(m)
ωk∑

m e−2π2TMm2+2iπmφx
= Gωk +G2

ωk
Σ(1)
ωk

(3.23)

The Poisson summation formula
∑∞

m=−∞ g(m) =
∫∞
−∞
∑∞

K=−∞ e2πiφKdφ∑
m e−2π2TMm2+2iπmφx cos(2πmτT )∑

m e−2π2TMm2+2iπφxm
=

1

2

∑
σ=±

∑
K

∫
φ

e2πiφKe−2π2TMφ2+2iπφφx cos(2πφτT )∑
K

∫
φ

e2πiφKe−2π2TMφ2+2iπφφx
=

1

2

∑
σ

∑
K e−

(K+φx+στT )2

2TM∑
K e−

(K+φx)2

2TM

= e−
τ2T
2M

∑
K e−

(K+φx)2

2TM cosh(τ(K + φx)/M)∑
K e−

(K+φx)2

2TM

(3.24)

Notice that e−τ
2T/(2M) cancel out.

Σ(1)
ωk

= −2α

∫ 1/2T

0

π2T 2

sin2 πτT
(1− cosωkτ)

∑
K,σ=± e−

(K+φx)2

2TM e
−τ
M

( 1
2

+K+σφx)

2
∑

K e−
(K+φx)2

2TM

(3.25)

3.3.1 0 ≤ φx < 1/2

For the limit T → 0 the dominant term for this flux is K = 0

Σ(1)
ωk

= −2α

∫ 1
2T

0

(Tπ)2

sin2 πTτ
(1− cos 2πkTτ)e

−τ
2M cosh

τφx
2M

= −2α
ω2
k

1− 4φ2
x

+O(ω4
k

)
(3.26)

This means that the perturbative correction does not create a dissipative term, only a correc-

tion to the mass. For φx = 0 the result is as that found for m = 0 in the previous subsection.

We can also see that for large ωk Σ(ωk) = πα |ωk| as expected.
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3.3.2 φx = 1/2

For φx = 1/2 the contribution from K = 0,−1 terms are the dominant ones. Their contri-

bution is the same∑
K e−

(K+φx)2

2TM

(
e
−τ
M

( 1
2

+K+φx) + e
−τ
M

( 1
2
−K−φx)

)
2
∑

K e−
(K+φx)2

2M

=
1

2
+O(e−τ/M) (3.27)

With that the self energy expression is

Σ(1)
ωk

= −α
2

∫ 1/2T

−1/2T

(πT )2

sin2 πτT
(1− cosωkτ) =

∫ 1/2T

−1/2T

gτ (1− cosωkτ) =

gωk=0 − gωk = −gωk = −απ
2
|ωk| (3.28)

The perturbative Green’s function is

G(1)
ωk

= Gωk +G2
ωk

Σ(1)
ωk

=
1

Mω2
k

+
Σ1(ωk)

M2ω4
k

(3.29)

Σ(1)
ωk

= −α


2ω2

k φx = 0

2
1−4φ2

x
ω2
k 0 < φx < 1/2

π
2
|ωk| φx = 1/2

+ higher order of ωk

This perturbation does not show the expected result, by which we expected Gω to have a

dissipative term after averaging over the flux 1/ηRφx =
∫ 1

0
K(φx)dφx. We do find a dissipative

term at flux half as expected but this term has zero weight upon averaging over flux.

We expect Kω = ω2
kGωk = K0(φx) + |ωk|K1(φx). Hence the dissipative form is obtained

only at φx = 1
2 with K1 = π

2ω2
k
. The singularity implies K1 ∼ δ(φx− 1

2) in fact by resummation

of the small α perturbation [27] found that K1 ∼ Tδ(φx − 1
2) at T → 0, i.e. a renormalized

ηR ∼ T → 0

3.4 Monte Carlo (MC) simulation

In this subsection we describe the numerical method used to solve the action . This model

was studied intensively using MC algorithm focusing on the effective mass [9, 19, 20], but
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no work has been done to calculate the effective α. It should be noted that for the related

problem of particle in periodic potential an effective dissipation was calculated using MC

simulations [43, 44], where it is well known that at αc = 1/(2π2) there is a phase transition

between a dissipative regime (αR → α) for α < αc and a localized regime (αR → ∞) for

α > αc [16, 45].

3.4.1 Model

We solve the model where the Matsubara partition function for particle on a ring in CL

environment is

Z =
∞∑

m=−∞

e−2π2m2MT+2πimφx

∫
D[θ]

e−S
(m)

(3.30)

S(m) =
1

2
MR2

∫ 1/T

0

θ̇2
τdτ +

∫∫ 1/T

0

g
(m)
τ−τ ′ cos (θτ − θτ ′)

g(m)
ωk

=
απ

4
(|ωk+m|+ |ωk−m|)

g(m)
τ = T

∞∑
k=−∞

g(m)
ωk

eiτωk = −α
2

(πT )2

sin2 πTτ
cos(2πmTτ) τ 6= 0

m is the winding number. The gτ=0 term has a positive divergence so that gωk=0
=
∫ 1/T

0
gτ = 0.

We wish to calculate numerically the Green’s function

K̃τ =
〈
θ̇

(m)
t θ̇

(m)
τ+t

〉
=
〈
θ̇tθ̇τ+t

〉
+ 4π2T 2(

〈
m2
〉− 〈m〉2) (3.31)

with θ
(m)
τ = θτ + 2πmTτ , or alternatively in frequency space

K̃ωk = Tω2
k

〈|θωk |2〉+ 4π2T 2(
〈
m2
〉− 〈m〉2)δ(ωk) ≡ Cωk +

1

M∗ δk,0 (3.32)

With Tδ(ωk) = δk,0. The first term K(ωk) is the correlation for k 6= 0. The second term is

the curvature.

1

M∗ =
∂2F
∂φ2

x

= −T ∂
2 logZ

∂φ2
x

= 4π2T (
〈
m2
〉− 〈m〉2) (3.33)
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3.4.2 Time discretization of the action

The numerical realization of the action requires discretization of the action by dividing the

time integral to N trotter segments with ∆τ = 1/(TN). Then τ = ∆τj, j = 0, 1, ...N − 1.

the variable θj is the time discretization of θτ . Equivalently in frequency domain the number

of modes ωk is N where ωk = 2πkT and k an integer k = 0, 1, ...N − 1.

For numerical time considerations it is more suitable to work with an action written in

Fourier space. Realization of the action in the time domain requires a computation time of

O(N2), where realization in frequency space requires numerical time of O(N logN).

The Conventions of Fast Fourier algorithm are that the terms k > N/2 are considered

instead of negative frequencies. θj is real means θk = θ∗N−k. The frequencies are ωk = 2πTk

for k < N/2 and for k ≥ N/2 ωk = ωN−k, so the action is symmetric. Note that θk=0 does

not contribute to the action.

S(m) = S0 + S(m)
α = T∆τ

N−1∑
k=0

[
M∆τ

2
ω2
k |θk|2 + g

(m)
k |ψk|2

]
(3.34)

Where g
(m)
k the discretize version of gωk

g
(m)
k =

π

2
α∆τ ×

 |ωk| = 2πT |k| |ωk| > |ωm|
|ωm| = 2πT |m| |ωk| < |ωm|

(3.35)

The partition function is

Z = e−βF = e−
MT
2

P
k ω

2
k|θk|

2∆τ2
∞∑

m=−∞

e−2π2m2MT e−2πimφxe−T∆τ
P
k g

(m)
k |ψk|2 (3.36)

We use here the Fast Fourier conventions for discrete transformation

Ok =
N−1∑
j=0

e2πi jk
N Oj ; Oj =

1

N

N−1∑
k=0

e−2πi jk
N Ok (3.37)

Setting ∆τ/M = 1/(TNM) as the dimensionless time unit. For convenience we choose

M = 1 in all simulations, which left us with three free parameters in the model, α, N and T .
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3.4.3 Green’s function

We are interested in the velocity velocity Green’s function of Eq. (3.31)

K̃τ =
〈
θ̇

(m)
t θ̇

(m)
τ+t

〉
=
〈
θ̇tθ̇τ+t

〉
+ 4π2T 2(

〈
m2
〉− 〈m〉2) (3.38)

Where 〈·〉 is understood as an average over both the action and over the time domain t. The

Green’s function for the periodic part in is Cτ =
〈
θ̇tθ̇τ+t

〉
. This function in frequency space

is found by the Wiener-Khinchin theorem, where θ̇ω is the Fourier Transform of θ̇τ

Cω =

∫
τ

Cτe
iωτ =

∫
τ

eiωτ
∫
ω1,ω2

〈
θ̇ω1 θ̇ω2

〉
e−iω1t−iω2(τ−t) =

∆ω

2π

∫
t

∫
τ

eiωτ
∫
ω1,ω2

〈
θ̇ω1θ̇ω2

〉
e−iω1t−iω2(τ−t) =

∆ω

2π

〈
|θ̇ω|
〉

(3.39)

with the time span 1/T , ∆ω = 2πT and we get Cω = T

〈∣∣∣θ̇ω∣∣∣2〉. In discrete form the time

correlation function is Cj1,j2 =
〈
θ̇j1θ̇j2

〉
, Ck is the Green’s function in discrete frequency

form, with the Wiener-Khinchin theorem it is

Ck =
N−1∑
j=0

Cje
2πi jk

N =
1

N2

∑
j

e2πi jk
N

∑
k1,k2

〈
θ̇k1 θ̇k2

〉
e−2πi

j1k1
N
−2πi

(j1−j)k2
N =

1

N3

∑
j1

∑
j

e2πi jk
N

∑
k1,k2

〈
θ̇k1 θ̇k2

〉
e−2πi

jk1
N
−2πi

(j1−j)k2
N =

1

N

〈∣∣∣θ̇k∣∣∣2〉 (3.40)

where θ̇k is the discrete Fourier Transform of θ̇j = (θj+1 − θj)/∆τ . The continuum θ̇ω and

the discrete θ̇k are related by

θ̇ω =

∫
τ

θ̇τe
iωτ = ∆τ

N−1∑
j=0

θ̇je
2πi jk

N = ∆τ θ̇k (3.41)

and the Green’s functions are related by

Cω = T

〈∣∣∣θ̇ω∣∣∣2〉 = T∆τ 2

〈∣∣∣θ̇k∣∣∣2〉 =
∆τ

N

〈∣∣∣θ̇k∣∣∣2〉 = ∆τCk (3.42)
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The full correlation functions, including also the winding part of Eq. (3.31)

K̃ω = T

〈∣∣∣θ̇ω∣∣∣2〉+ 4π2T (
〈
m2
〉− 〈m〉2)δk,0 = T

〈∣∣∣θ̇ω∣∣∣2〉+ 4πT 2(
〈
m2
〉− 〈m〉2)δ(ω)

K̃
(m)
k =

1

N

〈∣∣∣θ̇k∣∣∣2〉+ 4π2 T

∆τ
(
〈
m2
〉− 〈m〉2)δk,0 (3.43)

with θ̇k=0 = 0 due to the periodicity, and δk,0 = Tδ(ω).

3.4.4 Monte Carlo (MC) Algorithm

In this section we outline the numerical algorithm used to calculate an expectation value

Q = 〈Q〉S where the average is done with respect to an action S, the partition function is

Z =
∫ D[x]e−S[x] and x are action variables.

The MC algorithm goes as follows [46]: one starts with an arbitrary values for the

variables x, and runs a long series of steps of a Markov chain. In this chain of steps one

moves between different states of the variables x so as to approach equilibrium. In any

state state µ of the system the expectation value Qµ is calculated, the final result for the

expectation value is Q = 1
M

∑M
i=1 Qµi , where M is the number of states average over.

In order for the system to approach equilibrium and remain there two conditions are

imposed on the transition probability between states. The first is ergodicity, the requirement

that the Markov process can reach any state from any other state. The second is detailed

balance that requires the ratio between Pµ→ν , the probability for a transition between state

µ and state ν, and Pν→µ the probability for a transition between state ν and state µ, to equal

the ratio between the probability to be in state ν (or the weight of state ν) which is e−S[xν ]

to the probability to be in state µ, explicitly

Pµ→ν
Pν→µ

= e−(S[xν ]−S[xµ]) (3.44)

The probability Pµ→ν for transition between states is composed of two terms, a selection

probability that gµ→ν is the probability the µ → ν move is suggested, and an acceptance

probability Aµ→ν . The transition probability is then Pµ→ν = gµ→νAµ→ν .
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3.4.5 Metropolis algorithm

There are several possible choices for Pµ→ν that obey the ratio of Eq. (3.44). The Metropolis

algorithm is a commonly used choice, in a standard Metropolis algorithm the MC step changes

the state µ → ν by taking in each step a random index j ∈ [1, N ] and a suggests update

θj → θj ± δθj with probability gµ→ν = 1. Then the update is accepted with the transition

probability

Aµ→ν = Pµ→ν =

e−(S[xν ]−S[xµ]) S[xν ]− S[xµ] > 0

1 otherwise
. (3.45)

and the suggested update amplitude δθj is determined dynamically in the simulation to

produce an acceptance ratio of 1/2. For the partition function in our model we define an

effective action that contains all windings

Z =
∞∑

m=−∞

e−2π2m2MT+2πimφx

∫
D[θ]e−S

(m) ≡
∫
D[θ]e−Seff [θ]. (3.46)

Following an idea from [43] our algorithm is the following. In each numerical step we create

a set of θk using the selection probability

gµ→ν = e−S0[θµ] = e−
1
2
T∆τ2

PN−1
k=1 Mω2

k|θk|
2

(3.47)

Meaning we choose random set of θk k = 1, 2..N/2 taken from an exponential distribution

with mean 2/(T∆τ 2Mω2
k) and a uniform random phase and θN−k = θ∗k. The acceptance

probability is taken as in the Metropolis algorithm excluding the Gaussian kinetic mass

term,

Aµ→ν = min

[
1,

∑
m e−2π2m2MT+2πimφxe−S

(m)
α [θµ]∑

m e−2π2m2MT+2πimφxe−S
(m)
α [θν ]

]
(3.48)

so that Eq. (3.44) is satisfied.

42



3.4.6 The sign problem

A problem arises here since the Metropolice algorithm requires the weights e−Seff [θ] to be

non-negative. In our model the winding summation
∑

m e−2π2m2MT+2πimφxe−S
(m)
α [θµ] can be

negative for φx 6= 0. In particular near φx = 1/2 the alternating sign means that the number

of states with negative weight approaches the number of states with positive weight as the

temperature decreases. This is due to the factor e−2π2m2MT , where for large T the contribution

to the summation is restricted to the m = 0 sector but as the temperature decreases more

winding sectors contribute to the value of Z.

A standard method [47] to calculate an expectation value Q when the weight P can be

negative is to replace the calculation of the values Qµ with respect to weights Pµ by the

values of QµSµ |Pµ|1−κ with respect to the weights |Pµ|κ where Sµ is the sign of Pµ. Then

the expectation value of 〈Q〉P is for any real κ

〈Q〉P =

∑
µ PµQµ∑
µ Pµ

=

∑
µ Sµ |Pµ|1−κ |Pµ|κQµ∑
µ Sµ |Pµ|1−κ |Pµ|κ

=

P
µ Sµ|Pµ|

1−κ|Pµ|κQµP
µ|Pµ|

κP
µ Sµ|Pµ|

1−κ|Pµ|κP
µ|Pµ|

κ

=
〈S ·Q〉|P |κ
〈S〉|P |κ

(3.49)

This method solves the issue of negative weights but a different problem, the infamous ’sign

problem’, arises. In our simulation we use the conventional scheme with κ = 1 where the

average sign 〈S〉|P | decreases exponentially with the numerical size N or equivalently with

1/T [47] which means that the standard deviation of the expression increases exponentially

as N increases, making the numerical results unreliable for large N values.

3.4.7 Effective Mass

The zero frequency term K̃k=0 = 1
M∗

= 4π2 T
∆τ

(〈m2〉 − 〈m〉2) defines the effective mass of the

particle and is found by calculating the winding distribution Zm during the simulation.

1

M∗ = 4π2T (
〈
m2
〉− 〈m〉2) = 4π2T

(∑
mm

2Zm∑
m Zm

−
(∑

mmZm∑
m Zm

)2
)

Zm = e−2π2m2MT e−2πiφxme−
T
2

P
k πα|ωk|

(m)|ψk|2∆τ2

(3.50)
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Note that second term 〈m〉 is imaginary duo to the e2πiφxm in Zm, hence the −〈m〉2 term is

positive. The first term 〈m2〉 can be either negative or positive, it reduces as φx approaches

1/2. Note that for some values of φx the term 1/M∗(φx) must be negative as the integral

over the flux is
∫ 1

0
1

M∗(φx)
dφx = 0.

The effective mass was calculated in numerous works in the past for this model and for

other related models [9, 19, 20]. An exponential decay of 1/M∗(φx = 0) as α increases is well

established.

3.5 Numerical results and discussion

In Fig.6 the MC data for K̃ωk for the three values N = 100, 200, 400 and α = 1/(2π2) are

presented as well as for N = 100 and α = 5. Dots are the data for fluxes φx = 0, 0.2, 0.4, 0.5

(Blue, Green, Red, Cyan) green lines are the small α perturbation from Eq. (3.25). The

red line is the first order large α perturbation of Eq. (3.13). The zero frequency (k = 0)

data points for 1/M∗(φx) are seen only for the small flux data, for larger flux data their

value is out of the figure range. The numerical results show that for small N (high T ) we

get the perturbative results for both small and large values of α. However for the small α

value (upper and lower left figures) as we lower the temperature (increase N), the result

for large flux become unreliable and the data becomes flux independent. This result is

probably caused by the numerical sign problem. We would expect that for large N values

the correlation function, especially close to the degeneracy point of φx = 1
2 , will become

linear for small frequencies. That linearity, should we be able to achieve it for a low enough

temperature, would define the effective dissipation value αR, its φx integration would give

ηR, the subject of our work.

The bottom right figure demonstrates that for large α values the results are flux inde-

pendent and fits the perturbation of Eq. (3.13)
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Figure 6: Upper left panel: MC data for N = 100 with α = 1/(2π2) ∆τ = 1/2. Upper

right panel: MC data N = 200 with the same parameter set. Lower left panel: MC data

for N = 400 with the same parameter set. Lower right panel: MC data N = 100 with

α = 5. All data points fall on the same curve, meaning the data is flux independent.
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4 Winding of planar gaussian processes

Motivated by our study of quantum noise in a ring geometry in this section we study the

behavior of a general correlated noise (or process) in a two dimensional plane. The focus is

the study of the angle φt of the noise ξt = ξxt + iξyt = |ξt| eiφt and its relation to the correlation

Ct,t′ of the ξt’s. The work in this section was published in [1].

4.1 Introduction and model

The winding of planar random processes has been studied for a while. These are of interest for

the physics of polymers [48–51], flux lines in superconductors [52, 53] and quantum Hall effect

[54, 55]. Recently there was revived interest in winding properties of processes described by

Schramm-Loewner Evolutions (SLE) [56, 57], such as the loop erased random walk [58].

The aim of this section is to study the winding of a very general continuous-time gaussian

process ξt = ξxt + iξyt in the complex plane with arbitrary correlations in time. The only

restriction, mainly to avoid cumbersome formula, is that the measure is rotationally invariant

around the origin 0 and the winding angle φt is measured around point 0, i.e. ξt = rte
iφt

where φt is a continuous real function of time and rt = |ξt|. The process is thus centered

〈ξt〉 = 0 and fully characterized by its two-time correlation function:

〈ξitξjt′〉 = δijCtt′ (4.1)

with i, j = x, y, equivalently 〈ξtξt′〉 = 0 and 〈ξ∗t ξt′〉 = 2Ctt′ . The most general form would be

〈ξ∗t ξt′〉 = 2(Ctt′ + iAtt′) but we also assume reflection symmetry which forbids the antisym-

metric term εijAtt′ in (4.1) with ε12 = −ε21 = 1. We use the notation ctt′ = Ctt′/
√
CttCt′t′

with ctt = 1 and from Cauchy-Schwartz inequalities |ctt′| ≤ 1. Some particular cases are (i)

stationary process Ctt′ = C(t − t′) and one defines ct0 = c(t) = C(t)/C(0) (ii) process with

stationary increments C
(1,1)
tt′ := ∂t∂t′Ctt′ = C2(t− t′) (here and below we adopt the following

definition for partial derivatives ∂tCtt′ = C
(1,0)
tt′ etc..). Normalizability of the Gaussian mea-
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sure requires that these functions have positive Fourier transforms c̃(ω) ≥ 0 and C̃2(ω) ≥ 0.

We restrict to a process which everywhere below we call ”smooth”, meaning - by definition

here - ξt differentiable at least once, i.e. C
(1,1)
tt exists (equal −C ′′(0) for a stationary process).

For such a smooth process, 〈ξ̇itξit〉 = C
(1,0)
tt = C

(0,1)
tt = 1

2
∂tCtt, which vanishes if furthermore

the process is stationary.

This model corresponds to our Langevin equation (2.33) with E = 0 where the correlation

matrix is that of quantum CL noise C̃(ω) = ω coth(~ω/2T ) (here we use the short time cutoff

τ0 in the form C̃(ω) = |ω|e−τ0|ω|, i.e C(τ) = 1
π

τ2
0−τ2

(τ2
0 +τ2)2

) and in the limit η → 0 (and m→ 0).

mθ̈t + ηθ̇t = ξxt cos θt + ξyt sin θt = − |ξt| sin(θt − φt)
sin(θt − φt) = 0 if η → 0 (4.2)

Then the angle θt is pinned to the noise phase φt, which is being studied now. We have

seen that the Langevin description is valid only at large η, hence the present study does not

correspond to our quantum case. Yet it has its own relevance as mentioned above.

The outline of the section is as follows. In section 4.2 we study single time quantities. The

distribution of angular velocity is obtained. In section 4.3 we study the periodized winding

probability distribution which is easier than the full one. The correlations of exp(inφt) are

obtained analytically for integer n, and studied numerically also for non-integer n. In Section

4.4 we obtain a closed formula for the variance of the winding angle as a function of the matrix

Ctt′ . We show that for most stationary processes the winding angle exhibits diffusion at large

time and we obtain the diffusion coefficient, we also study non-stationary processes.Finally in

Section 4.5 the variance of the algebraic area is obtained. Most results are tested numerically.

4.2 Single time quantities

Single time quantities are easily extracted from the Gaussian distribution ∼ d2ξte
−|ξt|2/(2Ctt)

performing change of variables. Everywhere below we consider d2ξ = dξdξ∗ = dξxdξy.
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The modulus is distributed as P (rt)drt with P (r) = r
Ctt
e−r

2/(2Ctt), hence the probabil-

ity to be within rt < ε near the center vanishes as ε2/(2Ctt). To compute the distri-

bution of the angular velocity φ̇t one uses that Xt = (ξt, ξ̇t) is gaussian with measure

d2ξtd2ξ̇t
(2π)2

det(M)e−
1
2
X∗MX and correlation matrix M−1 = ((Ctt, C

(1,0)
tt ), (C

(0,1)
tt , C

(1,1)
tt )). Let us

denote ξ̇t = αtξt with αt = ṙt/rt+iφ̇t. Here we have requested a smooth process.The measure

becomes d2ξtd2αt
(2π)2

|ξt|2 det(M)e−
1
2
β|ξt|2 where β = (1, α∗t )M(1, αt). Integration over ξt yields the

joint distribution P (ρ̇t, φ̇t)dρ̇tdφ̇t, with ρt = ln rt, equal to:

dρ̇tdφ̇t
π

CttC
(1,1)
tt

(C
(1,1)
tt − 2C

(1,0)
tt ρ̇t + Ctt(ρ̇2

t + φ̇2
t ))

2
(4.3)

Integration yields:

P (φ̇t)dφ̇t = dφ̇t
at

2(at + φ̇2
t )

3/2
(4.4)

with at = (CttC
(1,1)
tt − (C

(1,0)
tt )2)/C2

tt = ∂t∂t′ ln |ctt′||t′=t. For a stationary process at = a =

−c′′(0). For stationary increments at = C2(0)/Ctt − 1
4
(∂t lnCtt)

2. Note that this distribution

is broad, it does have a first moment but no second moment i.e. 〈φ̇2
t 〉 is infinite.

4.3 Periodized winding

Next one can compute two time correlations of the winding angle. The two time probability

measure of the process can be written:

rtrt′drtdrt′dφtdφt′

(2π)2∆tt′
exp(−Ct′t′r

2
t + Cttr

2
t′ − 2Ctt′rtrt′ cos(φt − φt′)

2∆tt′
) (4.5)

with ∆tt′ = CttCt′t′ − C2
tt′ hence integration over rt and rt′ allows to obtain the probability

distribution of cos(φt − φt′). Equivalently this gives the probability of φ := φt − φt′ modulo

2π, i.e it gives the periodized probability P̃ (φ) =
∑+∞

m=−∞ P (φ + 2πm) where P (φ) is the

probability of the total winding φ ∈] − ∞,+∞[. The probability distribution allows to
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compute the correlation functions Cn(t, t′) = 〈ein(φt−φt′ )〉 for any integer n, for instance closed

expressions for Cn(t, t′) = Fn(ctt′) as a function of the matrix Ctt′ :

F1(c) =
1

c
(E(c2) + (c2 − 1)K(c2))

F2(c) = 1 + (
1

c2
− 1) ln(1− c2). (4.6)

with E, K the respective elliptic integral functions. We have checked these results numerically

for several stationary processes where ctt′ = c(τ) = C(τ)/C(0) where τ = t− t′. The process

ξit was generated numerically using a discrete Fourier transform of
√
c̃(ω)N∆τAi, where N

the number of points is typically N = 216, ∆τ = .01 is the time segment in the process and

Ai is a unit white gaussian process. We computed Cn(τ) where the average 〈einφ〉 is over the

time range and over several realizations, typically 10. We plotted Cn(τ) parametrically as a

function of c(τ) for various type of noises. Up to numerical accuracy all the curves fall on the

predicted master curve Cn(τ) = Fn(c(τ)). When c(τ) is non monotonous, the master curve

may be traced more than once. This is illustrated in the left panel of figure 7.

4.4 Variance of the total winding angle

The previous results are easy to derive, and are simple functions of ctt′ , but they do not

contain information about integer winding. They only probe P̃ (φ), the periodized winding

angle distribution. An interesting question is how to access the full winding distribution

P (φ) and whether its dependence on the matrix Ctt′ remains tractable. It is a more difficult

question since to compute the full winding angle one must follow somehow the time evolution

of the process, e.g. use that φ = φt−φt′ =
∫ t
t′
dφs. A related difficult question, which requires

the full distribution P (φ), is to obtain the averages Cn(t, t′) = 〈ein(φt−φt′ )〉 for non integer n. It

is seen on the right panel of figure 7 that these are not simple functions, but rather unknown

and more complicated functionals, of ctt′ .

We present the simplest result for this question, the variance of the winding angle. Here,
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Figure 7: Left panel: The correlation function Cn(τ) for n = 1 (top curve) and for n = 2

(bottom curve) as a function of c(τ) for c(τ) = 1−τ2

(1+τ2)2
(Blue curves) and the prediction

for F1(c) and F2(c) (Red curves). The inset shows how the curve is retraced for negative

values of c. Right panel: The correlation function Cn(τ) for n = 1
4

(three curves starting

on the top) 5
4

(three curves starting on the bottom) as a function of c(τ) for three processes:

c(τ) = exp−τ 2/2 (in blue), the c(τ) used in left panel (in green), c(τ) = (1− τ 2) exp−τ 2/2

(in red). Note that for each n the three curves remain very close for c > 0.4 and that for

n = 5/4 all processes change sign.

for simplicity, and to avoid stochastic calculus subtleties, we restrict to a smooth, i.e. differ-

entiable process. We compute the two time angular velocity correlations

Cv(t, t′) = 〈φ̇tφ̇t′〉 =
1

2
(
−C(1,1)

tt′ Ctt′ + C
(1,0)
tt′ C

(0,1)
tt′

C2
tt′

) ln(1− c2
tt′)

= −1

2
(∂t∂t′ ln |ctt′ |) ln(1− c2

tt′) (4.7)

where we recall that ctt′ = Ctt′/
√
CttCt′t′ . The variance of the winding angle is then obtained

Φtt′ = 〈(φt − φt′)2〉 =

∫ t

t′
dt1

∫ t

t′
dt2Cv(t1, t2) (4.8)

For stationary processes ctt′ = c(τ) = C(τ)/C(0) with τ = t − t′. The angular velocity
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correlation becomes Cv(t, t′) = Cv(t− t′) with:

Cv(τ) =
1

2
(
C ′′(τ)C(τ)− C ′(τ)2

C(τ)2
) ln(1− c(τ)2)

=
1

2
(∂2
τ ln |c(τ)|) ln(1− c(τ)2) (4.9)

And the winding angle become Φtt′ = Φ(t− t′)

∂τΦ(τ) = 2

∫ τ

0

ds
c′(s)2

1− c(s)2
+
c′(τ)

c(τ)
ln(1− c(τ)2) (4.10)

For processes such that c(+∞) = 0 we find that the generic behavior is that the winding

angle diffuses at large time as Φ(τ) ∼ 2Dτ with a diffusion coefficient:

D =

∫ ∞
0

ds
c′(s)2

1− c(s)2
(4.11)

an integral which converges at small s values when the process is smooth since c′(0) = 0.

Examples of some of the non-generic situations where winding angle diffusion does not

occur is c(τ) = J0(τ) for which (4.11) is log-divergent at large s and one finds superdiffusion

Φ(τ) ∼ 2
π
τ ln τ at large τ . The above predictions are checked numerically in Fig. 8 in

the time variable τ , and as a parametric plot using c(τ) in Fig. 9, for the diffusive and

superdiffusive case.

We now study non-stationary processes, such processes often occur in the context of

aging or coarsening dynamics [59, 60]. In some cases these processes can be mapped onto a

stationary process using the property of reparametrization of time: if the process ctt′ has a

winding angle φt then the process cg(t)g(t′) has a winding angle φg(t) for any positive monotonic

function g(t). Hence for processes of the form ctt′ = ĉ(g(t)−g(t′)), the variance of the winding

angle is obtained as Φtt′ = Φ̂(g(t)−g(t′)) where Φ̂(τ) is the variance for the stationary process

ĉ(τ). Hence diffusion in Φ̂(τ) ∼ 2Dτ implies Φtt′ = 2(g(t)− g(t′))D. Among non-stationary

processes, processes with stationary increments are of special importance. One such process

is the fractional Brownian motion (FBM), Ctt′ = 1
2
(t2h + (t′)2h − |t− t′|2h), with 0 < h < 1.
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Figure 8: The angular velocity correlation function Cv(τ) as a function of τ for the c(τ) used

in Fig.1 (the blue curve with the stronger decay), and for c(τ) = J0(τ) (the second blue

curve) together with the predictions of Eq. (4.9) (red curves). In the inset the winding angle

variance Φ(τ), divided by τ , is displayed for the same two cases. From the top, the first

function (in blue) saturates to its diffusive value (red line), with D ∼ 2.92 calculated from

Eq. (4.11). The second function (in blue) is compared with the superdiffusion prediction

Φ(τ) = 2
π
τ log τ + 0.907τ from Eq.(4.10). Both results are an average over 50 realizations

For h = 1/2 one recovers the standard Brownian motion (BM). The FBM with h > 1/2 is

smooth and the above mapping applies with the time change g(t) = ln t

ĉ(s) = cosh(hs)− 22h−1| sinh(s/2)|2h (4.12)

can be used, leading to diffusion for the winding angle in the variable g(t) = ln t at large

times, i.e. Φtt′ ∼ 2Dh ln(t/t′) where Dh =
∫∞

0
ĉ′(s)2/(1 − ĉ(s)2) diverges as h → 1/2+. The

cases of the Brownian motion h = 1/2 require a different expression since we can only address

smooth processes, a general smooth process with stationary increments is

Ctt′ =
1

2
(f(t) + f(t′)− f(t− t′)). (4.13)

The choice f(t) ∼ t at large t corresponds to the BM. One possible choice for a smooth

process is f(t) = t− 1 + e−t ∼ t2/2 at short times. Taking the large t limit at fixed τ = t− t2
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Figure 9: Left panel: Parametric plot of the winding angle variance Φ(τ) (y-axis) and c(τ)

(x-axis) for the c(τ) used in Fig.1 (blue curves) and the linear diffusion formula Φ(τ) = 2Dτ

with D ∼ 2.92 as predicted from Eq. (4.11) (in red). The inset shows the angular velocity

correlation function Cv(τ) as a function of c(τ) for for the same choice of c(τ) (blue curves)

and the results of Eq. (4.9) (red curves). Right panel: Parametric plot of the winding

angle variance Φ(τ) as a function of c(τ) for c(τ) = J0(τ) (blue curves) and the asymptotic

prediction Φ(τ) = 2
π
τ log τ + 0.907τ calculated from Eq. (19) (in red). In the inset the

correlation function Cv(τ) is shown as a function of c(τ) for the same c(τ) (blue curves),

together with the results of Eq. (4.9) (red curves). Both results are an average over 50

realizations

we find

Φtt′ ∼ 1

2
(ln t)2 (4.14)

and recover known behavior of the BM [61]. This was verified numerically in Fig. 10.

4.5 Algebraic area enclosed

Finally we can study the algebraic area At enclosed by the process, which satisfies Ȧt =

1
2
(ξxt ξ̇

y
t − ξyt ξ̇

x
t ). Its variance is CA(t, t′) = 〈ȦtȦt′〉. For a smooth stationary process one
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Figure 10: Left panel The variance of the winding angle Φtt′ for t′ = 1 as a function

of t for the random walk, i.e. Ctt′ of Eq. (4.13) with f(t) = t − 1 + e−t (bottom blue

curve) as compared to the asymptotic prediction of Eq.(4.14) (corresponding red curve). The

correlation functions Φtt′ for t′ = 1 as a function of t for the FBM with h = 0.6 calculated

using the equivalent stationary process (4.12) with the time reparametrization s → et (top

blue curve). The asymptotic diffusion prediction, Φtt′ = 2Dh=0.6 log t where Eq. (4.11) gives

Dh=0.6 ≈ 1.7 is also shown (top red curve). The results for the random walk required an

average over ∼ 103 realizations. Inset:The ratio Φtt′/ ln2 t for the random walk, same data,

showing the convergence towards 1/2 as predicted in (4.14). Right panel: The variance

of the algebraic area ΦA = 〈[At − At′ ]2〉 with t′ = 1 as defined above for : (i) the random

walk, i.e. Ctt′ as in Fig. 8 (blue curve on top at large time) and the asymptotic prediction

∼ t2/4 (corresponding red curve) (ii) the result for the stationary process c(τ) of the left

panel of figure 7 as a function of t ≡ τ (bottom curve) and the asymptotic prediction 2DAt

with DA = 3π/8 (corresponding red curve). In the inset the ratio ΦA/t
2 is plotted for the

random walk as a function of t, and shows saturation towards the predicted prefactor 1/4.
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finds CA(τ) = −1
2
C ′′(τ)C(τ) + 1

2
C ′(τ)2, and the diffusion result 〈A2(τ)〉 ∼ 2DAτ with DA =∫∞

0
C ′(s)2ds. For the random walk f(t) ∼ t we find 〈A2

t 〉 ∼ t2/4 at large t. This is larger

than the result for Brownian paths constrained to come back to their starting points (loops)

obtained in Ref. [62, 63]. This is well confirmed by our numerics displayed in Fig. 10, where

the result for a stationary process which exhibits only diffusive growth of the area is also

shown.

4.6 Conclusion

We have computed the angular velocity correlation of a very general smooth Gaussian process

in the plane. This allowed us to obtain a simple closed formula for the diffusion coefficient

of the winding angle valid for most such stationary processes. Our formula also extends to

non-stationary processes, and we derive an expression for the algebraic area enclosed by such

processes.

For the Langevin equation of section 2.5 with m, η → 0 we find a diffusive fluctuation

Φ(τ) = 2Dτ with D ∼ 2.92, in contrast to the large η form of 2.31. The main relevance of

this section is, however, to the theory of classical random processes.
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5 Summary

In the first part of this work we calculated the renormalized dissipation parameter of a particle

in a ring in presence of a dissipative Caldeira-Legget (CL) environment and an external force.

Using a renormalization group reasoning we found that the renormalized dissipation ηR flows

to a fixed point ηc = ~/2π for large η > ηc. We also studied the Langevin equation which

describes the semiclassical limit of this model, and expanded the model for a dirty metal

type of environment.

The flow to a fixed point is related to a known quantization of the relaxation resistance

in a Coulomb box with a single channel. The mapping between the models assumes many

channels and we found that a certain average which contains the relaxation resistance is

quantized for large η.

We considered the condition for a proposed box experiment. The field E should be suffi-

ciently small so that gR is sufficiently near the fixed point. For an initial g ≈ 1 integration of

∂gR/∂ lnE = g2
R yields gR = 1/ ln(~ωc/E)� g. E.g. for gR . 0.1 and a typical ~ωc ≈ 1 meV

one needs E/~ . 108Hz. E/~ has frequency units, corresponding to 108 electrons/sec flowing

into the box. We propose measuring the charge fluctuations (noise) SQ(ω) = e2〈N̂tN̂t′〉ω at

a frequency, temperature and level spacings ∆ such that ∆ < ω, T � 108Hz, to yield the

DC response (2.7) and (2.78). We predict then that the noise SQ(ω)(2Ec
e~ )2 1

ω
= ~

ηR
= 2π is

quantized.

In the second part of the work we studied the equilibrium properties of the particle, using

perturbation in either large or small values of η and using a Monte-Carlo (MC) algorithm.

For the algorithm we found that a sign problem emerges and prevents identification of the

ηR and hence numerical verification of the fixed point was not feasible.

In the third part of the work we studied a problem in the theory of classical random

processes. Given a general two dimensional Gaussian processes on a plane we asked what

are the properties of the angle φt around the center. This problem has some relevance to
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the semi-classical limit of our model if the process corresponds to a CL environment. We

found that for stationary processes with correlation c(s) the angle diffuses with a diffusion

coefficient D =
∫∞

0
ds c′(s)2

1−c(s)2 if this integral is finite. For a random walk process the variance

of the angle grows as 1
2

ln2 t, and the variance of the algebraic area enclosed by a stationary

process diffuses as DA =
∫∞

0
c′(s)ds.
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Appendix A Derivation of the semiclassical Retarded

Green’s function

A.1 Detailed derivation of the 1st order term

First order perturbation of the Green’s function

R
(1)
t,t′ = −i1

2

∫
t1,t2

Bt1,t2

〈
θ̂t1 θ̂t2 cos(θt1 − θt2)θ̂t′θt

〉
S0

= (A.1)

−i
4

∫
t1,t2

Bt1,t2

∑
σ=±

∂αi=1,2,3,4
Exp

[
iα1θ̂t1 + iα2θ̂t2 + iσθt1 − iσθt2 + iα3θ̂t′ + iα4θt

]
|αi=0

An Averaging with Gaussian weight〈
eiθt1+iθt2+...+iθ̂t1+iθ̂t2+...

〉
= ei〈θt1+iθt2+...〉 e−〈(θt1+θt2+...)(θ̂t1+θ̂t2+...)〉 =

eivt1+ivt2+...eiRt1,t2+iRt2,t1+.... (A.2)

The retarded function

R
(1)
t,t′ =

1

4i

∫
t1,t2

∑
σ=±

∂αiBt1,t2 eiα1(−σRt2,t1+α4Rt,t1 )+iα2(σRt1,t2−+α4Rt,t1 )+iα3(σRt1,t′
−σRt2,t′+α4Rt,t1 )eiσv(t1−t2) =

1

4

∫
t1,t2

∑
σ=±

∂α4Bt1,t2(σRt2,t1 − α4Rt,t1)(σRt1,t2 + α4Rt,t1)(σRt1,t′ − σRt2,t′ + α4Rt,t1)e
iσv(t1−t2) =

−
∫
t1,t2

Bt1,t2 cos v(t1 − t2)Rt,t1Rt1,t2(Rt1,t′ −Rt2,t′) (A.3)

In the last expression we use RtR−t = 0.
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A.2 Derivation of the 2nd order term

Using the same procedure for the second order

R
(2)
t,t′ =

i

2

〈
θ̂t′θt(Sint)

2
〉

= (A.4)

− i
8

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4

〈
θ̂t1 θ̂t2 cos(θt1 − θt2)θ̂t3 θ̂t4 cos(θt3 − θt4)θ̂t′θt

〉
=

1

25i

∫
t1..4

Bt1,t2Bt3,t4

×
∑

σ1,σ2=±

∂αi=1..6

〈
eiα1θ̂t1+iα2θ̂t2+iα3θ̂t3+iα4θ̂t4+iσ1θt1−iσ1θt2+iσ2θt3−iσ2θt4+iα3θ̂t′+iα4θt

〉
|αi=0

using the symmetry between σ1 ↔ −σ1 and t1 ↔ t2 and similarly for t3, t4

R
(2)
t,t′ =

1

8

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4e
iv(t1−t2)−iv(t3−t4)∂α6 [−Rt2,t1 +Rt3,t1 −Rt4,t1 + α6Rt,t1 ]

[Rt1,t2 +Rt3,t2 −Rt4,t2 + α6Rt,t2 ] [Rt1,t3 −Rt2,t3 −Rt4,t3 + α6Rt,t3 ]

[Rt1,t4 −Rt2,t4 +Rt3,t4 + α6Rt,t4 ] [Rt1,t′ −Rt2,t′ +Rt3,t′ −Rt4,t′ + α6Rt,t′ ] (A.5)

the choice t1 > t2, t3, t4, only Rt,t1 remains. Rτ is real, we separate the exponent to two sinus

and two cosine terms as follow

R
(2)
t,t′ =

1

8

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4 (cos v(t1 − t2) cos v(t3 − t4)− sin v(t1 − t2) sin v(t3 − t4))Rt,t1

[Rt1,t2 +Rt3,t2 −Rt4,t2 ] [Rt1,t3 −Rt2,t3 −Rt4,t3 ] [Rt1,t4 −Rt2,t4 +Rt3,t4 ]

[Rt1,t′ −Rt2,t′ +Rt3,t′ −Rt4,t′ ] (A.6)

This long multiplicity of Rt terms is now separated to 8 different terms. Four of these terms

are symmetric in t3 ↔ t4, and four are antisymmetric. One of the symmetric terms will

vanish, we calculate explicitly the other 3 terms, which we label by a to c. Term ’a’:

Ra
t,t′ =

1

2

∫
t1..4

Bt1,t2 cos v(t1 − t2)×
Rt,t1Rt1,t2(Rt1,t′ −Rt2,t′)Bt3,t4 cos v(t3 − t4)(Rt1,t3 −Rt2,t3)(Rt1,t4 −Rt2,t4) =

1

2

∫
t1,t2

Bt1,t2 cos v(t1 − t2)Rt,t1Rt1,t2(Rt1,t′ −Rt2,t′) C̃t1,t2 (A.7)
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This term in ω space

Ra
ω = −1

2
R2
ω

∫
t

RtBt cos vt (eiωt − 1) C̃t

with C̃t = 2(C
(1)
t=0−C(1)

t ). Similarly we choose two different terms ’b’ and ’c’ and write them

directly in ω space

Rb
ω = R2

ω

∫
t

R
(1)
t Bt cos vt (eiωt − 1) (A.8)

Rc
ω = R3

ω

[∫
t

RtBt cos vt (eiωt − 1)

]2

= R−1
ω (R(1)

ω )2 (A.9)

note the R
(1)
t in the expression Rb is the first order result of the retarded green function. Rc

ω

is the reducible term containing multiplication of R
(1)
ω . Renormalized η for small v is

1

ηa2
=

1

2

1

η2

∫
t

RtBtC̃(t) t =
~
πη3

∫
t

RtBt t (log t+ γ +O(v) +O(1/t)) =

− ~2

2π2η3
log2 v +O(v)

1

ηb2
= − ~

πη2

∫
t

R
(1)
t Bt t = − ~

πη3

∫
t

RtBt t (log t+ γ + 1 +O(v) +O(1/t)) =

~2

2π2η3
log2 v − ~2

2π2η3
log v +O(v)

1

ηc2
=

1

η3

[∫
t

RtBt t

]2

=
~2

2π2η3
[log v +O(v)]2 =

~2

2π2η3
log2 v +O(v) (A.10)

We identify four terms antisymmetric in t3 ↔ t4 three of those terms will be of O(v) for small

v, and one term which we label d is the following, note that this term is applicable only for

the nonequilibrium case. In the Equilibrium case this term vanish (section 2.4.2)

Rd
ω = −R2

ω

∫
t1,t2

Rt1Rt2Bt1Bt2 sin vt1 sin vt2(1− eiωt1)

∫
t3

(Rt1+t3 −Rt3)

1

ηd2
= − 1

η2

∫
t1

Rt1Bt1 sin vt1 t
2
1

∫
t2

Rt2Bt2 sin vt2 =
~2

π2η3

1

v
× v log v +O(v) =

~2

π2η3
log v +O(v) (A.11)
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We used here∫
t3

(Rt1+t3 −Rt3) =
1

η

∫ 0

−t1

(
1− e−(t1+t3) η

m

)
+

1

η

∫ ∞
0

(
e−t3

η
m − e−(t1+t3) η

m

)
=
t1
η

(A.12)

With the term Rd
ω we got b = −1, where without it b = 0.

Appendix B Derivation of the full Retarded function

B.1 Derivation of the Sint perturbation

In this appendix we calculate the renormalized dissipation with Rτ → 1
η
Θ(τ)e−δτ where

δ → 0 and Bω from Eq. (2.38). The first order from (2.60) is

1

ηR1
= lim

ω→0
− 2

η2~
sin(

~
2η

)

∫
t

Bt cos vt e−δt t =
2

η
sin(

~
2η

)∂v

∫
ω

|ω|
1 + ω2τ 2

0

v

v2 − ω2
=

2

πη
sin(

~
2η

)[ln(vτ0) + 1] (B.1)

For the second order perturbation of the retarded Green’s function

R
(2)
t,t′ =

i

2

〈
θ̂t′θtS

2
int

〉
S0

=
i

25~4

∑
εi,σ,σ′=±

∂α1,α2

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4ε1ε2ε3ε4 ×〈
ei

~
2

(α1θ̂t′+α2θt+ε1θ̂t1+ε2θ̂t2+ε3θ̂t3+ε4θ̂t4 )+iσ(θt1−θt2 )+iσ′(θt3−θt4 )
〉
|αi=0 =

−i
24~4

∑
εi,µ=±

∫
t1,t2,t3,t4

Btiε1ε2ε3ε4A2 cos[v(t1 − t2) + µv(t3 − t4)]×

[iRt,t′ − 1
2~(ε1Rt,t1 + ε2Rt,t2 + ε3Rt,t3 + ε4Rt,t4)(Rt1,t′ −Rt2,t′ + µRt3,t′ − µRt4,t′)]

A2 = exp{i~
2
ε1(−Rt2,t1 + µRt3,t1 − µRt4,t1) + i

~
2
ε2(Rt1,t2 + µRt3,t2 − µRt4,t2)} ×

exp{i~
2
ε3(Rt1,t3 −Rt2,t3 − µRt4,t3) + i

~
2
ε4(Rt1,t4 −Rt2,t4 + µRt3,t4)} (B.2)

define τ = t1− t2 and then the factor Rt1,t′−Rt2,t′ is finite only if either (i) t′ < t1 and t2 < t′

hence t′ < t1 < t′ + τ , or (ii) t1 < t′ and t2 > t′ hence t′ + τ < t1 < t′; in both cases and

similarly, for τ ′ = t3 − t4∫
t1

[Rt1,t′ −Rt2,t′ ]→
1

η
τ

∫
t3

[Rt3,t′ −Rt4,t′ ]→
1

η
τ ′ t′ → −∞ (B.3)
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Therefore appears a factor [t1− t2 +µ(t3− t4)] cos[v(t1− t2) +µv(t3− t4)] = ∂v sin[v(t1− t2 +

µv(t3 − t4)], and since 1/η = limτ→∞R
R
τ

1

ηR2
=

i

η224~3

∂

∂v

∑
εi,µ=±

∫
t2,t3,t4

Bt1,t2Bt3,t4ε1ε2ε3ε4(ε1 + ε2 + ε3 + ε4)A2 sin[v(t1 − t2) + µv(t3 − t4)]

All the ± index εi are equivalent in the expression by change of variables ε1ε2ε3ε4
∑

i εi =

4ε2ε3ε4 this means the choice t1 > t2,3,4 and get (2.62). It easy to see∑
εi,µ=±

ε2ε3ε4 exp{i~
2
ε2(Rt1,t2 + µRt3,t2 − µRt4,t2) + i

~
2
ε3(Rt1,t3 −Rt2,t3 − µRt4,t3)} ×

exp{i~
2
ε4(Rt1,t4 −Rt2,t4 + µRt3,t4)} = −8i sin2 ~

2η
sin

~
η

(B.4)

for t1 > t3 > t2, t4 and zero otherwise. The remaining integral is∫
t1>t3>t2,t4

sin v(t1 − t2 + t3 − t4)Bt1,t2Bt3,t4 =
∑
σ

∫∫
ω1,ω2

Bω1Bω2

(ω1 + σv)2(ω2 + σv)
=

(2~η)2v ln vτ0[ln vτ0 + 1] (B.5)

after v derivation we get the result in (2.63).

Appendix C The published letter

This appendix contains the published letter

• Y. Etzioni, B. Horovitz and P. Le Doussal, “Rings and Boxes in Dissipative Environ-

ments”, Phys. Rev. Lett. 106, 166803 (2011)
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We study a particle on a ring in presence of a dissipative Caldeira-Leggett environment and derive its

response to a dc field. We find, through a 2-loop renormalization group analysis, that a large dissipation

parameter � flows to a fixed point �R ¼ �c ¼ @=2�. We also reexamine the mapping of this problem to

that of the Coulomb box and show that the relaxation resistance, of recent interest, is quantized for large

�. For finite �> �c we find that a certain average of the relaxation resistance is quantized. We propose a

box experiment to measure a quantized noise.

DOI: 10.1103/PhysRevLett.106.166803 PACS numbers: 73.23.Ra, 05.40.�a, 05.60.Gg, 73.23.Hk

Two of the most important mesoscopic structures are
rings, for the study of persistent currents, and quantum dots
or boxes, for the study of charge quantization. Of particular
recent interest is the quantization of the relaxation resist-
ance Rq, defined via an ac capacitance of a single electron

box (SEB). Following the prediction of Büttiker, Thomas,
and Prêtre [1] that Rq ¼ h=2e2 for a single mode resistor, a

quantum mesoscopic RC circuit has been implemented
in a two-dimensional electron gas [2] and Rq ¼ h=2e2

has been measured. The theory has been recently extended
to include Coulomb blockade effects [3] showing that
Rq ¼ h=2e2 is valid for small dots and crosses over to

Rq ¼ h=e2 for large dots.

In parallel, recent data has observed Aharonov-Bohm
oscillations from single electron states in semiconducting
rings [4]. Further theoretical works have considered the
effects of dissipative environments on a single particle in a
ring [5], in particular, studying the renormalization of the
mass M� and its possible relation to dephasing [5–8].

It is rather remarkable that the ring and box problems are
related via the AES mapping [9] where the ring experi-
ences a Caldeira-Leggett (CL) [10] environment.While the
exact mapping assumes weak tunneling into the box with
many channels, it has been extensively used to describe
various tunnel junctions [11], the Coulomb blockade
phenomena in SEB and in the single electron transistor
(SET) [11–21].

In the present work we address the ring problem by the
real time Keldysh method and study it using a 2-loop
expansion and renormalization group (RG) reasoning.
We find that perturbation theory identifies an unexpected
new small parameter sinð @

2�Þ where � is the dissipation

parameter on the ring, or the lead-dot coupling in the
SEB. We infer that a large � flows to a fixed point
�R ¼ �c with @=2�c ¼ �. An intuitive argument for this
quantization is given before the conclusions. In
Monte Carlo studies [15,18] of M�, no sign of a finite
coupling fixed point has been detected. Our method

evaluates the response to a strictly dc electric field E,
equivalent to a magnetic flux through the ring that in-
creases linearly with time, hence a nonequilibrium re-
sponse. We claim that thermodynamic quantities like M�,
that are flux sensitive, decouple from the response to E, a
response that averages over flux values.
In terms of the SEB, our results extend the previous

analysis [3] to the case of many channels Nc [22]. We note
that for Nc > 1 the relaxation resistance for noninteracting
electrons becomes h=ð2Nce

2Þ [1]. We find that for strong
coupling, �=@ * 1 the relaxation resistance is quantized to

e2=h up to an exponentially small correction�e���=@. For
finite �, but still �> �c we find that a certain average of
the relaxation resistance is quantized [see Eq. (12) below].
We proceed to reexamine the mapping of the box and

ring problems. For the SEB one has the action

S ¼
Z
t

�X
�n

dy�nði@@t � ��Þd�n � EcðN̂ � N0Þ2
�

þ Slead þ Stun; (1)

where d�n are dot electron operators, n ¼ 1; . . . ; Nc labels

the channels, N̂ ¼ P
�nd

y
�nd�n, Ec ¼ e2=ð2CgÞ with Cg is

the geometric (bare) capacitance, N0 is proportional to
the gate voltage, Slead describes free electrons on the lead
and Stun is the tunneling between the lead and the dot.
We introduce an auxiliary variable �t with an action

Ec

R
t½N̂ � N0 � @ _�=2Ec�2 and rewrite the total action as

S ¼
Z
t

�X
�n

dy�nði@@t � �� � @ _�tÞd�n þ @
2 _�2t
4Ec

þ N0@
_�t

�

þ Slead þ Stun: (2)

In terms of fermion operators ~d�n ¼ ei�ðtÞd�n, integrating
out these fermions and expanding in Stun yields the well
known effective action for the SEB [9,11–13,15–20].
Equation (2) shows that the equivalent particle on a ring
has a mass M ¼ @

2=ð2EcÞ (the radius of the ring is chosen
as ¼ 1) and there is a flux (in unit of the flux quantum)

PRL 106, 166803 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

22 APRIL 2011

0031-9007=11=106(16)=166803(4) 166803-1 � 2011 American Physical Society



�x ¼ �N0 through the ring. The tunneling amplitudes
squared, weighted by the number Nc of channels, become
the dissipation parameter � of the particle. The mapping
becomes exact in the largeNc limit at fixed � and for small
mean level spacing [23] � � Ec, a situation that can be
realized [22]; the application of this mapping is therefore
limited to the temperature range �< T � Ec.

Furthermore, by shifting @ _�t ! @ _�t þ 2EcðN̂t � N0Þ we

obtain @h _�ti ¼ 2Ec½hN̂iN0
� N0� and also a relation be-

tween response functions

@
2 ~Kt;t0 ¼ �2Ec@�ðt� t0Þ þ 4E2

cKt;t0 ; (3)

where ~Kt;t0 ¼ þi�ðt� t0Þh½ _�t; _�t0 �i is the response for the

ring while Kt;t0 ¼ þi�ðt� t0Þh½N̂t; N̂t0 �i is for the SEB.
The SEB response is parameterized as [3] e2

@
Kð!Þ ¼

C0ð1þ i!C0RqÞ where C0 is the effective dc capacitance

and Rq is the celebrated relaxation resistance [1]. The

corresponding ~Kt;t0 is the response to a change in the

external flux and is parameterized as

~Kð!Þ ¼ �K0ð�xÞ þ i!K1ð�xÞ þOð!2Þ (4)

and the persistent current from a time independent flux is

h _�ti ¼
R�x

0 K0ð�0
xÞd�0

x. The continuation to imaginary

time identifies the curvature of the free energy [5–8], or

an effective mass, as 1
@

@2F
@�2

x
¼ @=M�ð�xÞ ¼ K0ð�xÞ; e.g.,

without tunneling M� ¼ M while for large � the effective

mass M� � e��=@ is exponentially large.
Consider now the system in presence of a (classical)

electric field E, of Hamiltonian �H ring ¼ �ðEþ �EðtÞÞ�
and define the linear response �h�tiE ¼ R

t0 Rt;t0�Eðt0Þ to a
small perturbation �E. This response is studied below for a
dc field. In general its low frequency form is [see (8)
below] Rð!Þ ¼ �1

i!�RðEÞ which defines �RðEÞ as a renor-

malized dissipation parameter. Since E ¼ @ _�x we expect
@!2Rð!Þ ¼ ~Kð!Þ, hence the K0 term in Eq. (4) is not
reproduced. To resolve this discrepancy we note that an
additional constant flux �x in the total flux �x þ Et=@ can
be eliminated by redefining the origin of the time t, there-
fore the persistent current part should be eliminated.
More precisely, define @�xðtÞ ¼ Et; the 1st term in (4)
K0ð�xÞ ¼ K0ðEt=@Þ becomes a periodic function, i.e., an
ac response at !E ¼ 2�E=@. For a dc response at finite E
this persistent current response averages to zero, i.e.,R
1
0 K0ð�xÞd�x ¼ 0. The same reasoning applies to a �x

average on K1ð�xÞ. Hence the dc response to a dc field is
given by

lim
E!0

lim
!!0

~Kð!Þ
!

¼ i
Z 1

0
K1ð�xÞd�x: (5)

Therefore, @=�R ¼ R
1
0 K1ð�xÞd�x where we denote �R �

�RðE ! 0Þ. The order of limits in (5) signifies that �R is

essentially a nonequilibrium response. The physical pic-
ture is that in a dc field the particle rotates around the ring
and produces two types of currents. First is the persistent
current that oscillates in time as �x increases and is there-
fore time averaged to zero; this current is nondissipative.
Second, there is a genuine dc response from the i!K1 term,
which is dissipative.
In terms of the SEB response, using Eq. (3), we obtain

the following mapping of ring and box parameters as
functions of flux �x and N0:

M

M�ð�xÞ ¼ 1� C0ðN0Þ
Cg

;

@

�R

¼ e2

@

Z 1

0

C2
0ðN0Þ
C2
g

RqðN0ÞdN0;

(6)

and we note also that
R
1
0 C0ðN0ÞdN0 ¼ Cg.

At this stage we can already propose an interesting

experiment for the SEB. By analogy with E ¼ @ _�x in the
ring, we propose measuring the response to a gate voltage
that is linear in time N0 � t. This leads to a dc current into
the Coulomb box whose dissipation is the average in
Eq. (6). This average is predicted to be quantized, at least
for �> �c, as discussed below.
We proceed now to study the ring problem. To derive the

Keldysh action, we start from the well known action of a
particle in a CL environment [10] in two dimensions
with a position vector x�

t , where � correspond to the
upper and lower Keldysh contour, SK ¼ i

R
t;t0 x̂tR

�1
t;t0 xt0 þ

1
2

R
t;t0 x̂tBt;t0 x̂t0 and xt ¼ 1

2 ðxþ
t þ x�

t Þ and x̂t ¼
ðxþ

t � x�
t Þ=@. The simplest response function Rð!Þ, in

Fourier transform, and the noise function Bð!Þ, at zero
temperature, are Rð!Þ ¼ ½M!2 þ i�!��1, Bð!Þ ¼
@�j!j. This quadratic problem corresponds to a particle
of mass M and a friction � within a Langevin equation
M €xt þ � _xt ¼ �t; each component of �t ¼ ð�x

t ; �
y
t Þ is ran-

dom with correlations Bð!Þ.
We project now the position on a ring, i.e., x�

t ¼
ðcos��t ; sin��t Þ, and rewrite the action in terms of classical

and quantum angle variables �t ¼ 1
2 ð�þt þ ��t Þ and �̂t ¼

ð�þt � ��t Þ=@:
SK ¼ S0 þ Sint þ Sc;

S0 ¼ i
Z
t;t0

�̂tR
�1
tt0 ��t0 ¼ i

Z
t;t0

�̂tR
�1
tt0 �t0 � iE

Z
t
�̂t;

Sint ¼ 2

@
2

Z
t;t0

Bt;t0 sin

�
@

2
�̂t

�
sin

�
@

2
�̂t0

�
cosð�t0 � �tÞ;

Sc ¼ i�

@

Z
t
½sinð@�̂tÞ _�t� � @�̂t _�t��;

(7)

where t� is infinitesimal below t. A Gaussian term S0 has
been singled out so that a perturbation scheme in powers of
Sint, Sc can be defined. We have added an external electric
field E, hence the particle acquires a velocity v ¼ h _�ti as a
function of E. To perform a perturbation theory it is
convenient to introduce the bare velocity v0 ¼ E=� and
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to define �t ¼ ��t þ v0t. The derivative of the vðEÞ char-
acteristics is easily shown to be related to �RðEÞ via

dv

dE
¼ i

�Z
t0
_�t�̂t0

�
¼ lim

t�t0!1
Rt;t0 � 1

�RðEÞ ; (8)

where Rt;t0 ¼ ih�t�̂t0 i is the full response function defined

above. We note that the form (7) for SK has been derived
also for the SEB [9,11,12,20,21].

The semiclassical limit of (7), which corresponds to
small @=�, is obtained by linearizing the sine terms, and
is equivalent to a Langevin equation (also obtained for the
SET [24])

M €�t þ � _�t ¼ �x
t cos�t þ �y

t sin�t þ E (9)

which is in fact the 2D Langevin equation projected on the
tangent to the ring.

We perform a perturbative expansion of the action with
respect to Sint, Sc to compute �RðEÞ. The perturbative
expansion of �RðEÞ exhibits logarithmic divergences
when E ! 0. The velocity v0 thus provides a natural low
frequency cutoff for this divergences, and the mass pro-
vides a high frequency cutoff at !c ¼ �=M. The expan-
sion terms can be classified as n loops by looking at
the small @=� power of each term which is of order
R2n�1Bn=�2 � @

n=�nþ1. However, we find, due to the
periodicity of the action in the angle variables, that the
R2n�1 factors in front of the logarithmic terms become
periodic functions: The result up to two loops and Oðv0Þ is

1

�RðEÞ ¼
1

�
� 2

��
sin

�
@

2�

�
ln½v0=!

0
c� þ 4

�2
@
sin2

�
@

2�

�

� sin

�
@

�

�
fln2½v0=!

0
c� þ b0 ln½v0=!

0
c�g; (10)

where b0 ¼ Oð1Þ may weakly depend on � and
!0

c=!c ¼ 1þOð1=�2Þ. In the semiclassical limit of large
� one can reexpress (10) in terms of the small parameter
	 ¼ @

�� and 	R ¼ @

��RðEÞ and obtain the 2-loop 
 function

as �E@E	R ¼ 	2
R � b0	

3
R þOð	4

RÞ which has the equi-
librium form [13,14] if b0 ¼ �1. We show in Fig. 1 our
numerical solution for Eq. (9) with a reasonable fit to the
2-loop form with b0 ¼ 0. The full quantum theory (7)
including its nonequilibrium limit (5) differs from these
descriptions [13,14,21].

We consider now the quantum theory, beyond large �.
We note that in (10) g ¼ 2

� sinð @

2�Þ acts as an unexpected

small parameter for the expansion, since all divergences
vanish when g ¼ 0. It raises the interesting possibility that
g ¼ 0 be viewed as a RG fixed point. For that we need to
find a renormalized coupling which obeys multiplicative
RG, the simplest choice being gR ¼ 2

� sinð @

2�RðEÞÞ. The

question is then whether the 
-function 
 ¼ �E@EgR
can be written only in terms of gR. Although the non-
periodic 1=� factor in (10) appears at first problematic,
we propose that resummation from higher loops, which
allows for higher order terms Oð 1

�4Þ changes the 1-loop

term in (10) by @

2� ! sinð @

2�Þ, so that by taking a sine of

both sides it yields to order g3

gR ¼ g� g2 lnðv0=!
0
cÞ þ g3½ln2ðv0=!

0
cÞ

þ b0 lnðv0=!
0
cÞ�; (11)

where � refers to g ¼ 0 with cosð @

2�Þ ¼ �1, leading to


ðgRÞ ¼ 	g2R � b0g
3
R þOðg4RÞ.

To further motivate this proposal we consider the

response �Rt;t0 ¼ i 2
@
h�t sinð@2 �̂t0 Þi. Physically, e�ið@=2Þ�̂t0

corresponds to an electric field pulse �EðtÞ ¼ � @

2�ðt�
t0Þ or equivalently a rapid change of flux by � 1

2 , therefore
�Rt;t0 corresponds to the difference in response to these two

flux pulses. For �Rt;t0 the 1-loop term is fully periodic with
@

2� ! sinð @

2�Þ in Eq. (10). We note that there are many other

operators that have vanishing perturbations at g ¼ 0 to 2nd
order in Sint, Sc, e.g., the dissipation term in Eq. (7)

h�t sinð@�̂t0 Þi, or the response to an ac field with frequency

v h�t cos��t0 sin@2 �̂t0 i. We propose then that g ¼ 0 are exact

zeroes of the perturbation expansion and requiring an RG
structure leads then to the result (11).
Equation (10) yields fixed points at @

2�n
¼ n� with

n ¼ 1; 2; 3; . . . that are attractive at �> �n and repulsive
at �< �n; i.e., the flow of � � �n is always to smaller �.
At these fixed points a Gaussian evaluation yields the
correlation hcos�t cos�0i � t�2n. We recall now a theorem
for the lattice model [25] where the equilibrium action with
mass related cutoff is replaced by an action on a lattice
resulting in an XY model with long range interactions. The
theorem states [25] that hcos�t cos�0i � 1=t2; this result
was also derived in first order in � [8]. The range �> �1
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FIG. 1 (color online). Velocity-field relation for Eq. (9) with
� ¼ 30@=�. The circles are numerical data, the full line is a 1st
order perturbation in 1=�, the dashed lower (red) line is its
logarithmic expansion for large lnv0=!c (v0 ¼ E=� being the
bare velocity) and the dashed upper (black) line includes the 2nd
order logarithmic term, corresponding to Eq. (10) for @ ! 0 and
b0 ¼ 0. The 2nd order terms are also shown in the inset after the

1st order is subtracted, i.e., Eð2Þ
�v ¼ E

�v � 1� @

�� ðlnv0

!c
� 1Þ.
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has an RG flow to �1 and is therefore consistent with the
theorem. The hypothesis of Gaussian fixed points corre-
sponding to n 
 2 is inconsistent with the theorem, i.e.,
hcos�t cos�0i becomes a relevant operator at the n � 2
points rendering them unstable. For �< �1 the system
may have non-Gaussian fixed points or a line of fixed
points as hinted by the small � perturbation [8]. Note
that in the SEB problem cos�t corresponds to a lead-dot
voltage and its correlations determine the SET conduc-
tance [9,11,19], while in the ring problem it corresponds
to fluctuations in the circular asymmetry.

The special value �R ¼ @=ð2�Þ has a topological inter-
pretation as a Thouless charge pump [26]. Consider a slow

change of �x by one unit with @ _�x ¼ �Rh _�i. For �R ¼
@=ð2�Þ the total change in the position of the particle isR
th _�idt ¼ 2�, i.e., the particle comes back to the same

position on the ring and a unit charge has been transported.
Such quantization requires a gap [26], though gapless cases
are also known [27,28]. The quantized �R also results from
arguing that there should be a unique frequency!E ¼ v as
E ! 0, as suggested by linear response.

We conclude that for �> �1 � �R the SEB satisfies
the quantization

Z 1

0

C2
0ðN0Þ
C2
g

RqðN0ÞdN0 ¼ h

e2
: (12)

In particular, when �=@ * 1 we have from the known

M�=M� e��=@ [5–8] and from Eq. (6) that C0=Cg ¼ 1þ
Oðe���=@Þ. We expect Rq to be independent of N0 at large

�, hence Rq ¼ h
e2
½1þOðe���=@Þ�, similar to the Nc ¼ 1

case [3].
The conductance for the ring can be defined by the

voltage around the ring 2�E=e and the current eh _�i=2�,
hence we expect the conductance for �> �R to be

Gring ¼ e2

4�2�R

¼ e2

h
: (13)

Finally, we reconsider the conditions for our proposed
box experiment. The field E should be sufficiently small so
that gR is sufficiently near the fixed point. For an initial
g � 1 integration of @gR=@ lnE ¼ g2R yields gR ¼
1= lnð@!c=EÞ � g. For example, for gR & 0:1 and a typi-
cal @!c � 1 meV one needs E=@ & 108 Hz. E=@ has fre-
quency units, corresponding to 108 electrons= sec flowing
into the box. We propose measuring the charge fluctuations

(noise) SQð!Þ ¼ e2hN̂tN̂t0 i! at a frequency, temperature

and level spacings � such that �<!, T � 108 Hz, to
yield the dc response (5) and (12). We predict then that the

noise SQð!Þð2Ec

e@ Þ2 1
! ¼ @

�R
¼ 2� is quantized.
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