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תקציר

רבים כבדים בגרעינים התגלו האחרונות, בשנים הנסיוניות המחקר שיטות התקדמות עם
ציריות־מעוותות. צורות שתי של זה, לצד זה קיום,

מספר עם בינונים־כבדים גרעינים לתאר ניתן (IBM) הגרעין של הבוזונים מודל בעזרת
האנרגיות את לתאר כדי נרחב באופן שימש זה מודל וניוטרונים. פרוטונים של זוגי
נעשה IBMב־ העיקרי השימוש כה עד כאלה. בגרעינים האלקטרו־מגנטים והמעברים

הבוזונים. בין דו־גופיות אינטרקציות המכיל המילטוניאן באמצעות
לתאר יכול כזה המילטוניאן בגרעין, שונות צורות שתי בין פאזה מעבר של בהקשר
שתי בין מסדר־ראשון פאזה מעבר לתאר כדי בלבד. ומעוותת כדורית צורה של דו־קיום

תלת־גופי. בהמילטוניאן בשימוש צורך יש מעוותות גרעיניות צורות
בלתי־תלויות. שונות אינטראקציות 17 קיימות IBMה־ של התלת־גופי בהמילטוניאן
יש כן, אם מעוותות צורות בין פאזה למעבר האחראיות האינטרקציות את למצוא כדי
את לתאר ניתן שבעזרתן האינטראקציות את נמצא זו בעבודה מושכלת. בגישה לנקוט
באמצעות זאת נעשה מעוותות. צורות שתי בין מסדר־ראשון פאזה במעבר הקריטית הנקודה
במצבים שימוש ובאמצעות וקולקטיבי, אינטרינסי להמילטוניאן הקריטי ההמילטוניאן חלוקת
נבחן מכן ולאחר שונות, שיטות באמצעות האינטרינסי ההמילטוניאן את ננתח קוהרנטים.

הקולקטיבים. האיברים הוספת בעקבות הנגרמים השינוים את
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Abstract

With the advancement of experimental techniques over the last few years,

many medium-heavy nuclei in and outside the region of stability were found

to have a coexistence of axially-deformed shapes.

The interacting boson model (IBM) has been used extensively for describ-

ing medium-heavy even-even nuclei. The vast majority of applications have

employed an Hamiltonian with two-body interactions. In conjunction with

quantum phase transitions, such an Hamiltonian can accommodate coexis-

tence of one spherical and one axially-deformed shapes.

The two-body IBM Hamiltonian, however, cannot describe first-order

shape phase transitions between prolate and oblate shapes. To achieve these,

a three-body Hamiltonian is needed. The three-body IBM has 17 indepen-

dent terms, which requires selection criteria in order to find the relevant

operators.

In this work we address this problem by a novel method based on the

resolution of the Hamiltonian into intrinsic and collective parts and coherent

states. The intrinsic Hamiltonian is first analyzed by various approaches,

and the affect of adding the collective parts is then examined.
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Background and Motivation

Quantum phase transitions (QPT) are widely researched in various areas of

Physics. For example condensed matter physics [1], quantum optics [2] and

nuclear physics [3]. They are characterized by a structural change of the

system at zero temperature, which occurs when a coupling constant in the

Hamiltonian is varied.

In nuclei, the effective Hamiltonian is a function of the proton and neu-

tron numbers, and the coupling constant is a function of these numbers.

Experimentally, nuclear phase transitions are indicated by the spectrum,

e.m. transitions, two-neutron separation energies and the isotope and isomer

shifts. The different phases correspond to “shapes” of the nucleus, and the

possible quadruple shapes are prolate, oblate, spherical and triaxial. Phase

transitions in nuclei were first observed for nuclei with 90 neutrons and about

60 protons [3]. In first-order phase transitions in nuclei, the critical point is

characterized by a coexistence of the nuclear shapes.

In recent years, with the advancement of experimental methods, an abun-

dance of experimental data that shows an evidence of shape coexistence be-

tween two deformed-shapes was collected. For example, the light Krypton

isotopes [4, 5], or the triple coexistence found in 186Pb [6] or 43S [7].

There are many approaches to the study of heavy nuclei, for example the

nuclear density functional theory, geometric model and the interacting boson

model. The interacting boson model (IBM) [8] is an algebraic approach, it

describes even-even nuclei and can be solved exactly by diagonalization of

relatively small matrices.
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The two-body IBM Hamiltonian is the simplest and most used Hamilto-

nian in this model. It consists of seven parameters in the Hamiltonian, and

was used extensively to describe first and second order phase transitions in

nuclei (see for example [9, 10]). The two-body IBM, however, cannot be used

to model the experimental data of two coexisting deformed phases, and as a

result cannot be used for first order phase transitions between two deformed

shapes (henceforth deformed-deformed). For this, three-body IBM is needed

[11].

The three-body Hamiltonian is much more complex than the two-body.

It contains a total of 17 independent terms. To use this Hamiltonian with

the experimental data, it is important to choose the correct parameters.

This work explores the possibilities for a first-order phase transition in

nuclei using the IBM. In particular, we present a novel method to construct

a three-body IBM Hamiltonian that accommodates coexistence of two de-

formed shapes, and analyze the resulting Hamiltonian.



Chapter 1

Interacting Boson Model

The interacting boson model (IBM) is a nuclear model proposed by Arima

and Iachello in 1974 [8]. It uses an algebraic and group theoretical approach

to model even-even nuclei. This approach is realized by using a number-

conserving Hamiltonian with an SO(3) symmetry, and bosonic creation and

annihilation operators.

The IBM assumes that the low-lying ‘collective’ states in even-even nuclei

can be described by bosons of angular momentum 0 and 2. This assumption

gains support from the features of generalized seniority calculations in the

shell-model, and of the spectra of near-closed shell nuclei, in which the 0+ and

2+ states lie much lower than higher angular momentum states [12]. Each

boson in the model represents a pair of valence nucleons, and the valence

nucleons are counted from the nearest closed shell. The counting is done for

protons and neutrons separately; for example 128
54Xe has 4 valence protons

(54 − 50), and 8 (hole) valence neutrons (82 − 74). Hence, to model this

nucleus in the IBM, the number of bosons is 6 (N = 8+4
2

).

1.1 Algebraic Structure

As mentioned above, the IBM describes a system of N bosons, where N

is determined separately for each nucleus. The model is best described

3



CHAPTER 1. INTERACTING BOSON MODEL 4

in second quantization. It consists of six bosonic creation-operators s†, d†µ

(µ = −2, .., 2) with an angular momentum L = 0, 2, along with six de-

struction operators s, dµ. The state |0〉 represents a closed-shell. The usual

commutation relations [dµ, s
†] = 0, [dµ, d

†
µ′ ] = δµµ′ , [s, s†] = 1 are imposed

and s|0〉 = dµ|0〉 = 0.

The Hamiltonian is built from n-body interactions, and is SO(3) scalar

and N -conserving. In their original formulation, Arima and Iachello con-

sidered one and two-body interactions [8], as it is the simplest Hamiltonian

which offers nontrivial results. It is noted that the destruction operator d

does not transform according to the L = 2 irreducible representation (irrep)

of SO(3). To amend this it is customary to use instead the tilde operators

d̃µ = (−1)µd−µ. These set of operators does transform as the L = 2 tensor,

and as such can be manipulated using Clebsch-Gordan coupling.

The most general two-body IBM Hamiltonian can be written as

H =εss
†s+ εdd

† · d̃+ u0(s†)2s2 + u2(s†d†) · sd̃+ v0[d† · d†s2 + (s†)2d̃ · d̃]

+v2[(d†d†)(2) · d̃s+ s†d† · (d̃d̃)(2)] +
∑

L=0,2,4

cL(d†d†)(L) · (d̃d̃)(L)

(1.1)

where εs, εd, u0, u2, v0, v2, cL(i = 0, 2, 4) are parameters. The notion (AB)(L)

is used to couple the two tensor-operators A and B to a new tensor-operator

with an angular momentum L. That is

(A(l1)B(l2))
(L)
M ≡

∑
m1,m2

(l1m1 l2m2|LM)A(l1)
m1
B(l2)
m2

where (l1m1 l2m2|LM) are Clebsch-Gordan coefficients. The dot-product is

defined as A(L) · B(L) = (−1)L
√

2L+ 1(A(L)B(L))(0), and the dependence

on the number of bosons comes into play in the Hilbert space in which H

acts. The 36 operators s†s, d†µdν , s
†dµ, d

†
µs fulfill the commutation relations

of the SU(6) generators, as a consequence, the set of basis states with given

N transform as the row of the symmetric irrep of U(6). This irrep can be

labeled by N . In addition, since the Hamiltonian is an SO(3) scalar, each
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of the eigenstates can be classified by an SO(3) label. It is of advantage to

find all the subgroups of U(6) that include SO(3) as a subgroup. This allows

us to label a basis of states (and operators) by a ‘chain’ of groups. That is,

label each state with a set of quantum numbers where each of the numbers

corresponds to a group’s irrep. The three chains in the IBM and their labels

are [13]:

U(6)
[N ]

⊃ U(5)
〈nd〉
⊃ O(5)

(τ)

⊃
n∆

O(3)
L

U(6)
[N ]

⊃ SU(3)
(λ,µ)

⊃
K

O(3)
L

U(6)
[N ]

⊃ O(6)
〈σ〉
⊃ O(5)

(τ)

⊃
n∆

O(3)
L

(1.2)

Here, the irrep labels appear below the group names. For a given chain, a

complete orthogonal basis can be found such that each state is labeled by

the irreps of that chain. The process of deducing the possible labels for each

chain is called “reduction to irreducible representations”, and the label of a

group irrep determines the possible labels of its subgroups.

The labels n∆ and K are special as they do not correspond to any group

(missing labels). However, they are sometimes necessary to distinguish be-

tween states, the labels of which are otherwise the same (ultimately this

depends on the dimension of the Hilbert space). A convenient choice for K

in the IBM is the Elliott basis [14]. Within this choice K is the same as the

angular momentum projection on the symmetry axis. States with different

K, but otherwise same group labels, are not necessarily orthogonal (after

SO(3) rotation).

When the Hamiltonian is composed of the Casimir operators that cor-

responds to one specific chain, then the eigenstates can be labeled by the

irreps of that chain. Such Hamiltonians are solvable in the sense that the

energies and transitions between states are known analytically. Changing

the coefficients of the Casimir operators change only the eigenvalues. These

types of situations are called dynamical symmetries
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1.2 Geometric Interpretation

1.2.1 The IBM Intrinsic State and Energy Surface

The IBM is an algebraic collective model, as opposed to the geometric col-

lective model [15], it does not contain any reference to geometry. A useful

concept that helps bridge the gap between the IBM and the geometric model,

and gives the IBM states geometrical meaning is the intrinsic state. The

(normalized) intrinsic state is a condensate defined by [16]:

|β, γ;N〉 =
(b†c)

N

√
N !
|0〉

b†c =
1√

1 + β2
[s† + β cos γd†0 +

β√
2

sin γ(d†2 + d†−2)]

β ∈ [0,∞), γ ∈ [0, π/3]

(1.3)

This state is intrinsic in the sense that it depends on the quadruple shape

variables β and γ, and that any of the IBM states can be projected from

it by properly averaging β, γ and the Euler angles. The limitation on the β

and γ parameters prevents the intrinsic state from having the same “shape”

in different orientations. For example, it can be seen that the intrinsic state

|β, π/3;N〉 is the same as |-β, 0;N〉 after π/2 rotation by the three Euler

angles: R̂(ψ = π/2, φ = π/2, θ = π/2).

The intrinsic state can be used as a trial function for a variational method.

The expectation value of the IBM Hamiltonian defines a two-parameter en-

ergy surface

EN(β, γ) = 〈β, γ;N |H|β, γ;N〉 (1.4)

The global minimum of this expression EN(β0, γ0), gives an upper bound on

the ground state energy. For N → ∞, the minimum of the energy surface

converges to the exact ground state energy.

The equilibrium shape of the Hamiltonian is defined by the parameters β0
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and γ0 that minimize the energy surface. Any intrinsic state |β0, γ0;N〉 can

be associated with a shape, determined by its β0 and γ0 parameters. The

possible shapes for the two-body IBM are spherical shape for β0 = 0, and an

axially deformed shape for β0 > 0, which can be either prolate shape (γ0 = 0)

or oblate shape (γ0 = π/3).

For the two-body Hamiltonians that correspond with the dynamical sym-

metries, the equilibrium shapes (for large-N) are [16]:

U(5) : β0 = 0

O(6) : β0 = 1, γ0 = arbitrary

SU(3) : β0 =
√

2, γ0 = 0

(1.5)

The U(5) limit can be associated with a spherical shape, as noted above.

This limit is called the an-harmonic spherical vibrator [17]. The SU(3) limit

can be identified with the axially-deformed rotovibrator [18] and the O(6)

limit can be identified with γ-unstable deformed rotovibrator [19].

It is noted that the state |β = 1, γ = 0;N〉 is the lowest weight state in

the SO(6) irrep 〈σ = N〉, and the state |β =
√

2, γ = 0;N〉 is the lowest

weight state in the SU(3) irrep (λ = 2N,µ = 0) (see [20] and [21]). In

addition the energy surface is invariant to rotations, and as a consequence

it will have the same value if the intrinsic states are rotated. For example

E(−β, 0) = E(β, π/3).

1.2.2 General Non-Spherical Basis

The general non-spherical basis (GNSB) is defined to be [22]:

b†c =
β cos γd†0 + β sin γ(d†2 + d†−2)/

√
2 + s

(1 + β2)1/2
b†x =

1√
2

(d†1 + d−1)

b†β =
cos γd†0 + sin γ(d†2 + d†−2)/

√
2− βs

(1 + β2)1/2
b†y =

1√
2

(d†1 − d−1)

b†γ =
1√
2

cos γ(d†2 + d†−2)− sin γd†0 b†z =
1√
2

(d†2 − d−2)

(1.6)
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It is a complete and orthonormal basis ([bi, b
†
j] = δij) that depends on the

two shape variables β, γ. As such, for any choice of β and γ, the IBM

Hamiltonian can be expressed in these operators. We note that the members

of the non-spherical basis do not have a well defined angular momentum (for

β > 0).

It is possible to approximate the lowest eigenstates and energies of any

Hamiltonian by using the Bogoliubov approximation. This is done by first

looking for the equilibrium values (β0, γ0) of the Hamiltonian, then re-writing

it in terms of the the twelve GNSB operators bi, b
†
i (β0, γ0). The next step

consists of replacing the condensate operators b†c and bc with
√
N , and then

retaining the highest order ofN . This approximation is similar to the normal-

mode expansion around the minimum of the potential energy.

The condensate |β0, γ0;N〉 can be decomposed into states with definite L.

These set of states are identified with the ground-band of the Hamiltonian

in a variational sense.

When β0 > 0 and γ0 = {0, π/3}, it is also possible to define the β- and γ-

intrinsic states that are associated with the equilibrium shape. These states

are defined by applying the b†β or b†γ operators to the intrinsic ground-state

with N − 1 bosons:

|bβ;N〉 = b†βbc|β0, γ0;N〉

|bγ;N〉 = b†γbc|β0, γ0;N〉
(1.7)

The resulting states can be used to define the β- and γ- bands of the equi-

librium values by an SO(3) projection. For these cases, the ground- and

β- bands have the K = 0 label, and as such are composed of the angular-

momentum states with L = 0, 2, 4, . . . The γ-band, in this case, has K = 2

and is composed of the states with L = 2, 3, 4, . . . [11]. The angular-momenta

of the ground-, β- and γ-bands described above are in accordance with those

of the geometrical model (except for a finite-N effect).



CHAPTER 1. INTERACTING BOSON MODEL 9

1.3 Intrinsic and Collective Resolution of the

Hamiltonian

Using the notion of intrinsic states and energy surface, it is possible to split

the IBM Hamiltonian into intrinsic and collective parts: H = Hint+Hcol [23].

By definition, the intrinsic part has the same energy surface, up to a constant,

as the full Hamiltonian, and has the equilibrium states as eigenstates with

zero energy: Hint|β0, γ0;N〉 = 0. It affects the classical “potential energy”,

V (β, γ). The collective part is the rest of the Hamiltonian, and its energy

surface is independent of β and γ (that is, a constant).

The resolution into intrinsic and collective parts can be used to build

different Hamiltonians: the intrinsic part of the Hamiltonian serves to create

well defined bands, while the collective part serves to split and mix the bands.

This is an important feature as many even-even nuclei tend to have well

defined band structure.

To build an intrinsic Hamiltonian, we require the Hamiltonian to satisfy

Hint|β0, γ0;N〉 = 0 (1.8)

One way to do it is to find annihilation operators [22], Ti, such that

Ti|β0, γ0;N〉 = 0 (1.9)

The operators can then be combined to form a scalar number-conserving

Hamiltonian, Hint =
∑

ij CijT
†
j Ti, where the coefficients Cij are chosen so

that H is an SO(3) scalar.

For the two-body IBM, there are two annihilation operators with definite

angular momentum, L = 0, 2. The operators and their matching energy
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surface are [22]:

P0(β0) = d̃ · d̃− β2
0s

2

E0(β, γ) = 〈β, γ|P †0P0|β, γ〉 = N(N − 1)
β4 − 2β2

0β
2 + β4

0

(1 + β2)2

(1.10)

P̃2µ(β0) = β0

√
2sd̃µ +

√
7(d̃d̃)(2)

µ

E2(β, γ) = 〈β, γ|P †2 · P̃2|β, γ〉 = N(N − 1)2β2β
2 − 2β0β cos 3γ + β2

0

(1 + β2)2

(1.11)

From this expression it can be seen that P0(β0) annihilates the condensates

|β0, γ;N〉 (for any γ), and P̃2(β0) annihilates the condensates |0; γ;N〉 and

|β0, 0;N〉 (if β0 > 0) or |−β0, π/3;N〉 (if β0 < 0).

The intrinsic two-body Hamiltonian is given by the combination of the

two operators

Hint = h0P
†
0 (β0)P0(β0) + h2P

†
2 (β0) · P̃2(β0) (1.12)

1.4 Electromagnetic Transitions

The electromagnetic transition operators in the IBM are written as the most

general one-body operators with the required angular momentum. For ex-

ample, the quadruple transition operator, T (2), is given by [17]:

T (2) = eb(d
†s+ s†d̃+ χ(d†d̃)(2)) (1.13)

where the parameters eb, χ are determined by fitting the transitions to exper-

imental data. The total transition probability between two states |i L〉 and

|i′ L′〉 with definite angular momentum L and L′, governed by the operator
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T (λ), is given by:

B(Tλ; iL→ i′L′) ≡
∑
µ,M ′

|〈i′L′M ′|T (λ)
µ |iLM〉|2 =

(2L+ 1)−1|〈i′L′||T (λ)||iL〉|2
(1.14)

where 〈i′ L′||T (λ)||i L〉 is the reduced matrix element, and is independent of

M,M ′, µ.

When two intrinsic states with a definite angular momentum projection,

K,K ′ and no definite angular momentum are given: |αK〉 =
∑

LCL|αKL〉,
|α′K ′〉 =

∑
LCL|α′K ′L〉, it is sometimes needed to calculate the transition

probability of the L-projected (normalized) states |αKL〉, |α′K ′L′〉. In such

cases the reduced matrix element can be calculated as

(2L+ 1)−1/2〈α′K ′L′||T (λ)||αKL〉 =

Σµ(LK λµ|L′, K + µ)
∫
dτd

(L′)∗
K′K+µ(θ)〈α′K ′|R(θ)T

(λ)
µ |αK〉

(〈α′K ′|
∫
dτd

(L′)∗
K′K′(θ)R(θ)|α′K ′〉〈αK|

∫
dτd

(L)∗
KK (θ)R(θ)|αK〉)1/2

d
(L)
K′K(θ) ≡ 〈LK ′|e−iθLy |LK〉 (reduced Wigner-D matrix)

(1.15)

where R(θ) = e−iθL̂y is the rotation operator, dτ = d(cos θ) and θ ∈ [0, π].

Using this relation and Eq. (1.14), the total transition probability between

these states can be written as

B(Tλ;αKL→ α′K ′L′) =

|Σµ(lK λµ|l′, K + µ)
∫
dτd

(L′)∗
K′K+µ(θ)〈α′K ′|R(θ)T

(λ)
µ |αK〉|2

〈α′K ′|
∫
dτd

(L′)∗
K′K′(θ)R(θ)|α′K′〉〈αK|

∫
dτd

(L)∗
KK (θ)R(θ)|αK〉

(1.16)

If the L-projected states are written as a combination of n and n′ states:

|αKL〉 =
n∑
i=1

fi|αiKL〉 |α′K ′L′〉 =
n′∑
i=1

gi|α′iK ′L′〉 (1.17)

then the transition probability in Eq. (1.14) is written as a combination of
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the terms

B(Tλ;αKL→ α′K ′L′) = |
∑
i,j

fig
∗
j

(
〈α′K ′L′||T (λ)||αKL〉(2L+ 1)−1/2

)
|2

(1.18)

where each term in the parenthesis is the same as in Eq. (1.15).

1.5 Partial Dynamical Symmetries

The concept of dynamical symmetry (Section 1.1) provides considerable in-

sight, as it allows to find analytic solutions for the eigenstates and energies.

In most cases, however, an Hamiltonian with an exact dynamical symmetry

does not provide a good enough description of a nucleus, and other terms

need to be added. Partial dynamical symmetry (PDS) [24] refers to a system

in which the Hamiltonian does not have an exact dynamical symmetry, but

still some symmetry properties remain. Partiality can be divided into three

types:

• Type I: some of the eigenstates have all of the dynamical symmetry

• Type II: all of the eigenstates have part of the dynamical symmetry

• Type III: some of the eigenstates have part of the dynamical symmetry

A detailed discussion is given in [24] along with some algorithms to build

different Hamiltonians which present these types of PDS. Two examples of

PDS can be given when the Hamiltonian is chosen to be the intrinsic Hamil-

tonian of Eq. (1.12). An SU(3)-PDS Type I [25–27] is obtained when setting

β0 =
√

2. If h0 = h2 then this Hamiltonian is an SU(3) scalar. When

h0 6= h2, then the Hamiltonian is not an SU(3) scalar, nevertheless there is

a set of solvable states with good SU(3) labels. These are the states pro-

jected from the condensate |β0 =
√

2, γ0 = 0;N〉. This condensate is a lowest

weight vector of the SU(3) irrep (λ = 2N,µ = 0), and the states projected
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from it by an SO(3) projection, |[N ](2N, 0)K = 0L〉 with L = 0, 2, . . . , 2N ,

are eigenstates of the Hamiltonian with zero energy. A second example for

a PDS is an SO(6)-PDS Type III [28, 29] obtained by using the intrinsic

Hamiltonian when setting β0 = 1. Here, for h2 6= 0, the Hamiltonian is

not an SO(6) scalar, but a set of zero-energy eigenstates |[N ]〈σ = N〉L〉
(L = 0, 2, . . . , 2N) with mixed (τ) exists. These states can be projected from

the intrinsic state with β0 = 1, which is a lowest weight vector of the SO(6)

irrep with 〈σ = N〉.



Chapter 2

Quantum Shape Phase

Transitions

As mentioned above, any IBM Hamiltonian can be associated with an equi-

librium shape. This shape is defined by the values of the intrinsic variables

β and γ at the global minimum of the energy surface.

Quantum shape phase transitions take place in the IBM when the equilib-

rium shape is changed as a function of a coupling constant in the Hamiltonian.

The general procedure [30] consists of writing the Hamiltonian as a function

of a coupling constant λ: H = H(λ), followed by finding the minimum value

for the energy surface (and equilibrium values β0, γ0) for each λ:

EN(β, γ;λ) = 〈β, γ;N |H(λ)|β, γ;N〉

EN
min = EN(β0(λ), γ0(λ);λ)

(2.1)

A first order phase transition is characterized by a discontinuity in the

first derivative of EN
min as a function of λ. This is clearly the case when the

global minimum of the energy surface is changed abruptly as a function of λ.

When this happens, then there exist a value of λ = λc, for which the energy

surface has two coexisting global minima (see Figure 2.1).

14
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β

E

Figure 2.1: Energy surface in arbitrary units for a first-order phase transition.
Each surface corresponds to a different value of λ. The solid line depicts the
energy surface with two degenerate minima

2.1 2-Body IBM Hamiltonian

The general two-body IBM Hamiltonian was written in Eq. (1.1). The ac-

companied energy surface is [16]:

E(β, γ) = E0 +N(N − 1)β2 [a− bβ cos 3γ + cβ2]

(1 + β2)2
, c > 0 (2.2)

Here a, b, c are combinations of the parameters of the two-body Hamiltonian,

and c > 0 is required for a physical Hamiltonian. The possible coexistence

of global minima for the energy surface can only be achieved for spherical

(β = 0) and axially-deformed shapes (β = β0, γ = 0 or π/3), there cannot

be two isolated deformed global minima in the two-body energy surface.

In terms of the annihilation operators, the Hamiltonian that satisfies this

coexistence can be built by using the P †2 (β0) operator. The energy surface

then takes the form of Eq. (1.11).
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2.2 3-Body IBM Hamiltonian

Up to this point only two-body interactions were considered. The main limi-

tation that was stressed in the above sections, was the inability to construct

an Hamiltonian that can accommodate two deformed degenerate minima.

This prevented the IBM Hamiltonian from describing first order phase tran-

sition between two deformed shapes, and prevented the IBM from modeling

the experimental results of deformed-deformed coexistence. This is not the

case with the three-body IBM. The most general three-body IBM Hamilto-

nian can be written as [11]:

H =
∑

L=0,2,3,4,6

rLG
†
L · G̃L +

∑
L=0,2,4

[eL(G†L · K̃L + h.c.) + pLK
†
L · K̃L]

+ t2(G†2 · d̃s2 + h.c.) + f0(G†0s
3 + h.c.) + w2(K†2 · d̃s2 + h.c.) + x0(K†0s

3 + h.c.)

+ y2(s†)2d† · d̃s2 + z0(s†)3s3

(2.3)

where K†L ≡ s†(d†d†)(L), G†L ≡ [(d†d†)(ρ)d†](L) and (ρ, L) = (2, 0),(0, 2),(2, 3),

(2, 4), (4, 6). The energy surface can be written as

E(β, γ) = N(N − 1)(N − 2)[z0 + Ẽ(β, γ)]

Ẽ(β, γ) = (1 + β2)−3β2(Aβ4 +Bβ4Γ2 + Cβ3Γ +Dβ2 + EβΓ + F )
(2.4)

where Γ = cos (3γ) and A,B,C,D,E, F depend on the former 17 parameters.

For the proper choice of coefficients A,B,C,D,E, F , the three-body en-

ergy surface can have a degenerate deformed global minima or a triaxial one

[11]. As a consequence, first order deformed-deformed phase transition can

be modeled. The non-trivial question that remains is how to construct an

appropriate three-body Hamiltonian, with an energy surface that contains

two deformed global minima.



Chapter 3

Constructing the Critical

Hamiltonian

As mentioned in Section 2.1, the two-body energy surface does not allow

coexistence of doubly deformed shapes. By analyzing the general energy

surface of a three-body Hamiltonian, it was shown [11] that the three-body

IBM Hamiltonian can accomplish this goal. However, this Hamiltonian has

17 independent interactions. To find the interactions that are relevant for

such coexistence, and can accommodate two deformed shapes, a selection

criteria is needed. In the following section, we show how to construct a three-

body critical Hamiltonian that allows for two degenerate prolate-prolate or

prolate-oblate minima to coexist.

To find such Hamiltonian, the Hamiltonian will first be split into its

intrinsic and collective parts, as was shown in Section 1.3: H = Hint +Hcol.

The intrinsic Hamiltonian for a double coexistence should satisfy Eq. (1.8)

for two different condensates:

Hint|β1, γ = 0;N〉 = 0 (3.1a)

Hint|β2, γ = 0;N〉 = 0 (3.1b)

|βi, 0;N〉 ∝ (s† + βid
†
0)N |0〉

17
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These requirements automatically ensure that the energy surface of H will

have two global minima at β = {β1, β2} and γ = 0. Finding Hint then allows

us to identify the three-body interactions that are important for the phase

coexistence and to build a critical Hamiltonian.

In order to build the required intrinsic Hamiltonian, we will find operators

R̃L that annihilate the condensates. This is similar to Eq. (1.9), but instead

of using the condition that the operators nullify the |β0, 0;N〉 state, Eq. (3.1)

will be translated into two equations on the operators. That is, we are looking

for an operator R̃L with a definite angular momentum L, so that

R̃Lµ|β1, 0;N〉 = 0

R̃Lµ|β2, 0;N〉 = 0
(3.2)

If such operators are found, then a scalar, N -conserving semi-positive definite

Hamiltonian can be formed by

Hint =
∑
L

hLR
†
L · R̃L (3.3)

with hL > 0. To find the possible R̃L, we begin by listing the independent

three-boson operators with definite L:

L = 0 : sss, s(d̃d̃)(0), ((d̃d̃)(2)d)(0)

L = 2 : ssd̃µ, s(d̃d̃)(2)
µ , d̃(d̃d̃)(0)

L = 3 : [(d̃d̃)(2)d̃](3)
µ

L = 4 : [(d̃d̃)(2)d̃](4)
µ , s(d̃d̃)(4)

µ

L = 6 : [(d̃d̃)(4)d̃](6)
µ

(3.4)

Some of the operators are not listed since they depend on others. For exam-

ple [(d̃d̃)(4)d̃](4) =
√

10/11[(d̃d̃)(2)d̃](4). To build the required annihilation

operators we try to construct an operator with a definite angular momentum,

such that the two “annihilation equations” in (3.2) are satisfied. For the new

operator to satisfy both equations for arbitrary β1, β2 (but not identically for
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all β), we need at least three parameters (two equations and scaling). This

is the case only for the operators with the angular momentum of zero and

two. We found that there is a solution for both angular momenta. It is also

noted that the operator with L = 3 annihilates the condensate |β, 0;N〉 for

any β.

As an example for the calculation of Equation (3.2), the L = 0 operator

R0(β1, β2) will be found. It is noted that when combining the three-body

operators of Eq. (3.4), only the terms with triplets of {d0, s} needs to be

considered - that is d2
0s, s

3 and d3
0. The other terms will annihilate the con-

densate regardless of the coefficients chosen. If R0 exists, it can be written

as R0 = x1([d̃d̃](2)d̃)(0) + x2(d̃d̃)(0)s† + x3(s†)3, where the xi are yet to be

determined. Applying the operator on a condensate we find:

R0|βi, 0;N〉 ∝
(
x1([d̃d̃](2)d̃)(0) + x2(d̃d̃)(0)s† + x3(s)3

)
|βi, 0;N〉

= [(2,0; 2,0|20)(2,0; 2,0|00)x1d
3
0 + (2,0; 2,0|00)x2d

2
0s+ x3s

3](s† + βid
†
0)N |0〉

= (−
√

2/7/
√

5x1β
3
i + 1/

√
5x2β

2
i + x3)(βis

† + d†0)N−3|0〉 !
= 0

(3.5)

Requiring that this equation holds for the two states |βi, 0;N〉 (i = 1, 2),

these conditions then become two equations in the xi. In a similar manner

the L = 2 operator R̃2(β1, β2) can be calculated. The two operators read:

R0(β1, β2) = x1([d̃d̃](2)d̃)(0) + x2(d̃d̃)(0)s+ x3(s)3

x2 =

√
2

7
x1
β2

1 + β1β2 + β2
2

β1 + β2

x3 = −
√

2

35
x1

β2
1β

2
2

β1 + β2

(3.6)

and
R̃2(β1, β2) = x̃1(d̃d̃)(0)d̃+ x̃2(d̃d̃)(2)s+ x̃3s

2d̃

x̃1 =

√
10

7
x̃2

1

β1 + β2

x̃3 = x̃2

√
2

7

β1β2

β1 + β2

(3.7)

where the x1, x̃2 are scaling parameters.

The above results can now be used to build the intrinsic part of the critical
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three-body Hamiltonian:

Hint = h0R
†
0(β1, β2)R0(β1, β2) + h2R

†
2(β1, β2) · R̃2(β1, β2) (3.8)

It is interesting to note that using Eq. (3.8) with arbitrary coefficients

h0, h2, there are other states, beside the two condensates, that are eigenstates

with zero energy. These are the set of states in the U(5) basis, labeled by

N = nd = τ, n∆ = 0. To explain this, each of the constituents of R0 and R̃2

(Eqs. (3.6)-(3.7)) is regarded separately. We note that the states labeled by

nd = N have no s† bosons, so that all the operators that contains s annihilates

them. In addition d̃ · d̃ annihilates states labeled by nd = τ , because there

are no d-boson pairs coupled to zero [17]. The last term that needs to be

addressed is ([d̃d̃](2)d̃)(0). This operator annihilates all the U(5) states labeled

by nd = τ, n∆ = 0, L = τ, τ + 1, ..2τ − 2, 2τ [24]. When all of the above

conditions are united, then the states with N = nd = τ, n∆ = 0, L =

τ, τ + 1, ..2τ − 2, 2τ are annihilated by the six operators which compound R0

and R̃2, for any values of the xi’s.

It is also possible to express R0(β1, β2) and R̃2(β1, β2) in terms of the two-

body annihilation operators P0(β1) and P̃2(β1) (see Section 1.3), coupled to

either s or d̃ bosons. This kind of operator will, by construction, annihilate

the condensate |β1, 0;N〉. It is then possible to set the ratio between the

different operators so that it will annihilate the |β2, 0;N〉 condensate as well.

In terms of the scaling parameters x1, x̃2 of Eqs. (3.6),(3.7) the operators can

be written as

R†0 = a1s
†P †0 (β1) + a2P

†
2 (β1) · d†

a2 = x1/
√

35, a1 =

√
2

35
x1

β2
2

β1 + β2

(3.9)
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and

R†2 = b1d
†P †0 (β1) + b2(P †2 (β1)d†)(2)

b2 = x̃2/(
√

2β1), b1 = −x̃2

√
2

7

β2

β1

1

β1 + β2

(3.10)

From first glance it appears that the R†2 operator has more freedom, as we

can also use the P †2 (β1)s† operator, but this is not the case since the three

operators d†P †0 (β1), P †2 (β1)s†, (P †2 (β1)d†)(2) are not independent:

(P †2d
†)(2)
µ =

2√
7
P †0d

†
µ +

√
2

7
β1P

†
2µs
† (3.11)



Chapter 4

Energy Surface of the Critical

Hamiltonian

In the following sections the energy surface that corresponds with the critical

Hamiltonian will be analyzed, the extrema points will be identified, and the

energy barrier will be found. The energy barrier is defined as the minimum

energy difference the system will have to pass (in the configuration space,

here β, γ) between the two minima. In the classical sense this corresponds to

the minimum energy needed from some external agent to move the system

between the two minima.

The three-body energy surface was given in Eq. (2.4). It is a difficult task

to find the most general conditions on A,B, ..F , so that the energy surface

will have two coexisting global minima at (βi, 0), i = 1, 2. A different ap-

proach will be taken. The intrinsic Hamiltonian Hint was found in Eq. (3.8).

When h0, h2 > 0, the energy surface of Hint already have the required two

global minima. The energy surface of this interaction will now be discussed.

The extrema points of the energy surface satisfy dE/dβ = 0, dE/dγ = 0,

and to classify the extrema points, the Hessian should be calculated. In

22
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terms of the coefficients A,B, ..F , the extrema equations read [11]:

β[Cβ5Γ + 2(D − 3A− 3BΓ2)β4+(3E − 5C)β3Γ+ (4.1)

4(F −D)β2 − 3EβΓ− 2F ] = 0

β3 sin 3γ(2Bβ3Γ + Cβ2 + E) = 0 (4.2)

If B 6= 0 and Eq. (4.1) is not satisfied identically for the same values

that satisfy Eq. (4.2), then for 0 < γ < π/3 these two equations support one

solution in β and γ. The rest of the extrema are along the line γ = 0 (or

γ = π/3). The Hessian along this line is given in Appendix A. It is seen that

β = 0 is always an extremum. An extensive use will be made of the equality

E(β, π/3) = E(−β, 0), mentioned at the end of Section 1.2.1.

We note that A,B, ..F are functions of the 4 parameters β1, β2, h0, h2, and

by definition h0, h2 ≥ 0. The βi however, can take negative values, which

corresponds to a global minima at β = −βi, γ = π/3 (an oblate shape).

4.1 Energy Surface of R†0R0

The zero angular-momentum annihilation operator was found to be

R0(β1, β2;x1) = x1

[
([d̃d̃](2)d̃)(0) +

√
2

7

β2
1 + β1β2 + β2

2

β1 + β2

(d̃d̃)(0)s

−
√

2

35

β2
1β

2
2

β1 + β2

s3
] (4.3)

R0(β1, β2;x1) is determined up to scaling and henceforth x1 = 1 will be

used. When no confusion is likely to arise, it will be abbreviated to R0. The

corresponding energy surface is

E0(β, γ; β1, β2) ≡ 〈β, γ;N |R†0R0|β, γ;N〉 (4.4)

= N(N − 1)(N − 2)
2 (β2

1β
2
2 − (β2

1 + β2β1 + β2
2) β2 + (β1 + β2) β3 cos 3γ)

2

35 (1 + β2)3 (β1 + β2)2

(4.5)
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It is a positive semi-definite function, as is required. For γ = 0 it reduces to

E0(β, 0; β1, β2) = N(N − 1)(N − 2)
2(β − β1)2(β − β2)2(β − β3)2

35 (1 + β2)3 (β1 + β2)2
(4.6)

β3 = −β1β2/(β1 + β2)

The energy surface is in general a function of β1 and β2, as such it seems to

have different “topologies” that needs to be taken into account (for example

β1 < 0 < β2 and 0 < β1 < β2). However, the surface has some symmetries

that allows us to restrict the values of the β′is to 0<β2<β1. The rest of the

cases can be understood by using these symmetries. The symmetries for the

energy surface (4.4) are:

• It is symmetric with respect to β1 ↔ β2: E0(β, γ; β1, β2) = E0(β, γ; β2, β1)

• It is symmetric with respect to β1 → β3 = −β1β2/(β1 + β2). That is

E0(β, γ; β1, β2) = E0(β, γ; β3, β2)

• Taking β1 → −β1, β2 → −β2 is the same as taking β → −β, that is

E0(−β, γ; β1, β2) = E0(β, γ;−β1,−β2).

To find and classify the extrema points, we make use of the extrema equa-

tions (4.1)-(4.2), the hessian equations (Eq. (A.0.1), p. 64) and the known

global minima of the surface for γ = 0 from Eq. (4.6). A contour plot of the

energy surface with the extrema points is given in Fig. 4.1.

Recalling that each (β, γ) such that E0(β, γ) = 0 corresponds to an eigen-

state |β, γ;N〉 with zero eigenvalue (but not vice versa), it is interesting to

look for other zeros in the (β, γ) plane. It is found that the energy surface

consists of two separated trajectories for which E0(β, γ) = 0. The first one

connects the two points (β2, 0) and (|β3|, π/3) and the second one begins at

(β1, 0) and continues to infinity. These trajectories are depicted in Fig. 4.1

by a dashed line.

The last result which is of interest to this section, is to find the energy

barrier discussed above. It can be seen, from the “zero trajectory” that the
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Figure 4.1: The E0(β, γ; β1, β2) energy surface. β1, β2, β3 are global minima.
β−F , β0 are maxima, and β+

F is a saddle point. The dashed lines are the curves
for which E0(β, γ; β1, β2) = 0, and β+

F is the energy barrier between β2, β3

and β1

barrier between β2 and β3 is zero. The barrier between β1 and β2 (or β3) is

the saddle point located at (β+
F , γ = 0). A detailed derivation of the above

results is given in Appendix A.

The fact that the energy surface has trajectories in which it is zero, sug-

gest that the intrinsic Hamiltonian H = R†0R0 cannot be used by itself to

describe nuclei that exhibit phase coexistence. It must be accompanied by

some other intrinsic operator that removes these zero-energy trajectories.

4.2 Energy Surface of R†2 · R̃2

The energy surface of this operator is found by calculating E2(β, γ; β1, β2) =

〈β, γ;N |R†2 · R̃2|β, γ;N〉 where R̃2 is given in Equation (3.7). Setting x̃2 = 1



CHAPTER 4. ENERGY SURFACE OF THE HAMILTONIAN 26

the result is

E2(β,γ; β1, β2) = N(N − 1)(N − 2)×
2β2 {β4 − 2 (β1 + β2) (β2 + β1β2) β cos 3γ + (β2

1 + 4β2β1 + β2
2) β2 + β2

1β
2
2}

7 (1 + β2)3 (β1 + β2)2

(4.7)

Setting γ = 0 the energy surface reduces to

E2(β, 0; β1, β2) = N(N − 1)(N − 2)
2β2(β − β1)2(β − β2)2

7 (β2 + 1)3 (β1 + β2)2
(4.8)

The energy surface has the symmetry E2(β, γ; β1, β2) = E2(−β, γ;−β1,−β2),

hence the analysis can be limited to the cases β1 > 0, β2 and |β2| < β1.

We note that setting β = 0 results in E2(0, γ) = 0. This suggests that

the state |0, γ;N〉 ∝ (s†)N |0〉 is an eigenstate of the Hamiltonian R†2 · R̃2. An

intrinsic state with β = 0 corresponds to a spherical shape.

In contrast to the R†0R0 energy surface, there are no other points in the

(β 6= 0, γ) plane beside the two points (βi, 0) or (−βi, π/3) (if βi < 0) for

which E2(β, γ) = 0. This is evident from the fact that the energy surface is

a monotonic function of γ, and is a non-negative function.

To find the other extrema of the energy surface we calculate:

∂E2(β, γ)

∂β

∣∣∣∣
γ=0

= 0⇒

β(β − β1)(β − β2)
{
β3(β1 + β2) + β2(3− 2β1β2)− 2β(β1 + β2) + β1β2

}
(1 + β2)(β1 + β2)

= 0

(4.9)

The three solutions to the expression in the curly braces, denoted by βm1 , β
m
2 , β

m
3

are maxima, and their locations can be solved exactly in terms of β1, β2, as

it is a cubic expression. Assuming β1 > 0, β1 > |β2| (the other cases can be

found by the symmetry already discussed), the position of the three maxima
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with respect to the global minima β1 and β2 is

βm3 < 0 < βm2 < β2 < βm1 < β1 (0 < β2 < β1) (4.10a)

βm3 < β2 < βm2 < 0 < βm1 < β1 (β2 < 0 < β1, β1 > |β2|) (4.10b)

To calculate the energy barrier as in the former section, the two cases should

be treated separately. The barrier for the first case (4.10a) is the maximum

between (β2, 0) and (β1, 0), and the location of the barrier for the second

case, in Eq. (4.10b), is β =
√
|β1β2| (arbitrary γ). The derivation of the

above results is given in Appendix A.

Summarizing this section, the energy surface associated with the three-

body operator R†2(β1, β2) · R̃2(β1, β2) was found and analyzed. It is depicted

in Figure 4.2 on page 28. It was seen that the energy surface has a minimum

at β = 0. As a consequence, this is the most general energy surface in the

IBM (up to three-body interactions) that can describe a triple coexistence of

two deformed (prolate or oblate) and spherical shapes. This coexistence was

observed, for example in 186Pb [6]. As a result, the three-body Hamiltonian

H = R†2 · R2 is the most general intrinsic Hamiltonian that can be relevant

for such nuclei.
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Γ
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(a) β1, β2, 0 are global minima. βmi are maxima.
The barrier is located at βm1

Γ

Β

(b) β1, β2, 0 are global minima. βmi are maxima.
The dashed line represents the barrier and is an
equipotential line

Figure 4.2: The two different topologies for the energy surface E2. β1 >
β2 > 0 (top), and β1 > 0 > β2, |β2| < β1 (bottom)
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4.3 Energy Surface of the Critical

Hamiltonian

The complete intrinsic Hamiltonian is given by

Hint = h0R
†
0R0 + h2R

†
2 · R̃2 (4.11)

and the energy surface of the critical Hamiltonian is given by

E(β, γ; β1, β2, h0, h2) = h0E0(β, γ; β1, β2) + h2E2(β, γ; β1, β2) (4.12)

where E0 and E2 are given in Eqs. (4.4) and (4.7), h0, h2 > 0 and negative

βi corresponds, as always, to the point (−βi, π/3). The energy surface has a

global minima only at β = β1 and β = β2, because the other minima of E0

and E2 do not coincide.

The other extrema of the energy surface depend on the four parameters

h0, h2, β1, β2 in a complicated manner, and no attempt will be made to catalog

them analytically. The energy surface for γ = 0 is

E(β, 0; β1, β2, h0, h2) = N(N − 1)(N − 2)×

2(β − β1)2(β − β2)2
{
h0(β1β2 + β(β1 + β2))2 + 5h2β

2
}

35(1 + β2)3(β1 + β2)2

(4.13)

and the energy value at infinity is

E∞ ≡ E(∞, 0; β1, β2) = N(N − 1)(N − 2)

(
2

35
h0 +

2

7

1

(β1 + β2)2
h2

)
(4.14)

To find the energy barrier between the two minima, the prolate-prolate

(βi>0, i = 1, 2) and prolate-oblate (β2 < 0 < β1) situations should be treated

separately (the oblate-oblate surface is the same as that of the prolate-prolate

with β → −β). For the prolate-prolate energy surface, the barrier can be
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found on the γ = 0 line between the two points. This is because for β2, β1 > 0,

each of the combined energy surface is monotonically increasing in the γ vari-

able. For the prolate-oblate energy surface, the barrier is located either at a

saddle point with 0 < γ < π/3 - this is always the case if the β = 0 point is

maximum, or on the γ = 0 or γ = π/3 line.

From numerical tests, it seems that the prolate-prolate energy barrier is

usually lower than its prolate-oblate counterpart that is obtained by negating

one of the β’s. Some values for the two barriers for different β1, β2 are given

in Table 4.1.

Ebarrier/E∞ (10−2)

|β1| 0.4 0.4 0.7 0.7 1 1

|β2| 0.7 1 1 1.3 1.3
√

2
prolate - oblate 0.331 1.981 0.887 4.11 1.24 2.406
prolate - prolate 0.008 0.153 0.01 0.155 0.09 0.03

Table 4.1: Energy barrier height, Ebarrier, divided by the energy at infinity
E∞ from Eq. (4.14). The prolate - prolate and prolate - oblate are shown for
different values of β1, β2. The prolate - oblate values are obtained by using a
negative value for β2. Here h0/h2 = 1

As a consequence, it seems that the more substantial barrier for the crit-

ical Hamiltonian is obtained for an oblate-prolate coexistence. Figure 4.3

shows an example for the energy surface of such Hamiltonian, along with

a trajectory that connects the two minima and passes through the energy

barrier.

To summarize, this section described the energy surface that is the result

of the combined intrinsic Hamiltonian H = h0R
†
0R0 + h2R

†
2 · R̃2. It was

explained that there are no more zeros in the energy surface, except the two

required zeros. A numerical test seems to suggest that the energy barrier

that corresponds with a prolate-oblate coexistence is generally higher than

that of the prolate-prolate energy surface. In particular for all values that

were tested, the barrier between a prolate-oblate energy surface and the

prolate-prolate energy surface that is obtained by inverting the sign of the



CHAPTER 4. ENERGY SURFACE OF THE HAMILTONIAN 31

βββ
γγγ

β2

β1

βb

(a) The energy barrier is located at the saddle
point between the two points. There are two max-
ima: at β = 0 and β3 (located outside of the figure
on the γ = π/3 line). The dashed line shows a
trajectory between the two minima that passes
through the energy barrier.

βbβ1

E

β2

(b) Energy (in arbitrary units) along the
trajectory between the two β’s, depicted
in dashed line in the left Figure.

Figure 4.3: The energy surface of the critical Hamiltonian with β1 =√
2, β2 = −1 and h0/h2 = 1.

negative βi, was found to be higher (as shown in Table 4.1). This seems to

be in agreement with the empirical evidence that nuclei with prolate-oblate

coexistence are more common than nuclei with prolate-prolate coexistence.

Finally we have shown a contour plot for the energy surface of a prolate-

oblate critical Hamiltonian.
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4.4 Normal Modes Expansion of the Intrinsic

Hamiltonian

The previous chapter had dealt only with the energy surface of the two three-

body operators. This amounts to “classical” analysis of the Hamiltonian. No

mention of eigenstates and eigenenergies was made.

In the following sections the two three-body operators will be explored

with the concept of normal modes expansion (see Section 1.2.2).

If R0(β1, β2) and R̃2(β1, β2) are written in terms of the non-spherical

basis, bi(β, γ) with β = β1 or β = β2 and γ = 0, then the two operators,

by construction, will not include a b3
c component. This is a consequence of

Eq. (3.2), and can in fact be used as a requirement to find these operators.

For large-N the condensate operators b†c and bc can be replaced with
√
N ,

as discussed in Section 1.2.2.

4.4.1 Normal Modes of R†0R0

Rewriting the R†0R0 operator, Eq. (4.3), with the GNSB, where β = β1,

γ = 0, x1 = 1, replacing bc, b
†
c →

√
N and retaining the highest power of

√
N , we obtain

HB
0 (β1, γ = 0) =

2β2
1(β1 − β2)2(β1 + 2β2)2

35(1 + β2
1)(β1 + β2)2

N2b†βbβ (4.15)

where b†β ≡ b†β(β1, γ = 0) (this result is, of course, valid also for β = β2

with β1 ↔ β2). It should be noted that there is no b†γ dependency in the

expression. This is in accordance with the fact that ∂2E0(β1, γ)/∂γ2|γ=0 = 0

in the corresponding energy surface (see Appendix A.1).

Along the zero-energy trajectory E0(βt, γt) = 0 (see Section 4.1) this
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approximation yields

HB
0 (βt, γt) = cββb

†
βbβ + cβγ[b

†
γbβ + h.c.] + cγγb

†
γbγ

cββ = N2 2∆2

35β2
t (1 + β2

t )
2(β1 + β2)2

∆ = (3β2
1β

2
2 − β2

t (β
2
1 + β1β2 + β2

2))

cβγ = N2 6βt∆ sin (3γt)

35(1 + β2
t )

3/2(β1 + β2)
cγγ = N2 18β4

t sin (3γt)
2

35(1 + β2
t )

2

(4.16)

This expression can be written as two uncoupled number operators HB
0 =

λ+ω
†
+ω+ + λ−ω

†
−ω−. where λ+, λ− are found by diagonalizing the 2 × 2

Hermitian matrix cij (i, j = β, γ). The results are

λ+ = N2
2
{

9β6
t (β1 + β2)2 sin2(3γt) + (1 + β2

t ) (β2
t (β2

1 + β1β2 + β2
2)− 3β2

1β
2
2)

2
}

35β2
t (1 + β2

t )
2

(β1 + β2)2

λ− = 0

(4.17)

Here again, the fact that one of the eigenvalues is zero is a consequence of

the zero-energy trajectory. There is a direction in the (β, γ) plane in which

the energy surface is constant.

To find the lower bands energies, we should, as noted above, use the

normal modes expansion around the minima. However, it is unclear around

which minima the Hamiltonian should be expanded, because (βt, γt) consist

of a continuous line in the (β, γ) plane.

The results above further strengthen the conclusions from Section 4.2 that

H = R†0R0 cannot be used on its own to describe the intrinsic Hamiltonian

for two degenerate deformed shapes.

4.4.2 Normal Modes of R†2 ·R2

Rewriting the R†2 ·R̃2 operator, Eq. (3.7), with the GNSB, where β = β1, γ =

0, x̃2 = 1, replacing b†c, bc →
√
N and retaining the highest

√
N power, the
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result is

HB
2 (β1, γ = 0) =

2

7

{ β2
1(β1 − β2)2

(1 + β2
1)(β1 + β2)2

b†βbβ +
9β2

1

(1 + β2
1)2

(b†zbz + b†γbγ)
}
N2

(4.18)

where b†i ≡ b†i (β1, γ = 0). In contrast to the former operator, here the b†γbγ

term is not zero. This is because the two points (β1, 0) and (β2, 0) are not

part of a continuous zero-energy trajectory.

We note that b†zbz appears with the same coefficient as b†γbγ. This is a

consequence of the symmetry around the z-axis: z is not a Goldstone-mode

(as opposed to the rotation around the x- or y- axes), and the γ-vibration is

two dimensional [22].

4.4.3 Normal Modes Expansion of the Intrinsic Hamil-

tonian

The general three-body intrinsic Hamiltonian is composed of the two opera-

tors together: H = h0R
†
0R0(β1, β2) + h2R

†
2 · R̃2(β1, β2). For h0, h2 > 0 there

are two equilibrium points in the (β, γ) plane. These are the points (|β1|, γ1)

and (|β2|, γ2), where γi = 0 (γi = π/3) for βi > 0 (βi < 0). Combining the

results of the last two sections, the approximated energies can be written as:

E(nβ1 , n
β
2 , n

γ
1 , n

γ
2 ; β1, β2) = ε1,βn

β
1 + ε2,βn

β
2 + ε1,γn

γ
1 + ε2,γn

γ
2 (4.19)

where

ε1,β = N2 2

7

β2
1(β1 − β2)2

(1 + β2
1)(β1 + β2)2

(h0(β1 + 2β2)2

5
+ h2

)
ε1,γ = N2 18β2

1

7(1 + β2
1)2

h2

ε2,β = N2 2

7

β2
2(β2 − β1)2

(1 + β2
2)(β2 + β1)2

(h0(β2 + 2β1)2

5
+ h2

)
ε2,γ = N2 18β2

2

7(1 + β2
2)2

h2

(4.20)

N is the number of bosons, nij(j = 1, 2, i = β, γ) are the excitation-numbers

around each equilibrium point and β or γ band.
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We note that the ratio between the two γ-bands is independent of the

coefficients h0, h2

ε1,γ
ε2,γ

=
(1 + β2

2)2β2
1

(1 + β2
1)2β2

2

(4.21)

and the ratio between the two β-bands is

ε1,β
ε2,β

=
(1 + β2

2)β2
1

(1 + β2
1)β2

2

((β1 + 2β2)2h0 + 5h2

(β2 + 2β1)2h0 + 5h2

)
(4.22)

For the spherical-deformed-deformed case (h0 = 0), the values β2
i are

known once the ratios between the different bands, Eqs. (4.21) and (4.22),

are known. For the solution of the βi’s to be real, this restricts the possible

ratios between the β and γ bands: If the bands are labeled so that ε2,β > ε1,β,

then for a real solutions for the βi’s, it must be that
ε1,γ
ε1,β

>
ε2,γ
ε2,β



Chapter 5

Analysis of the Intrinsic

Hamiltonian

The intrinsic part of the critical Hamiltonian with a coexistence of deformed-

deformed shapes is Hint = h0R
†
0R0 + h2R

†
2 · R̃2 with arbitrary β1, β2 and

h0, h2 > 0. It was stated at the previous section that the energy barrier of

prolate-oblate nuclei is generally much higher than that of the prolate-prolate

nuclei, in addition prolate-oblate nuclei are more common in heavy nuclei.

For these reasons, this chapter will focus on prolate-oblate intrinsic Hamil-

tonian. In order to facilitate the identification of bands, the values β1 =
√

2,

β2 = −1 will be chosen. This ensures that each of the ground-bands can be

identified with its corresponding minima, as the β1 =
√

2 yields SU(3) PDS

and β2 = −1 yields SO(6) PDS (see Section 1.5). The excited states of each

minima are expected to keep some of the PDS characteristics, and as such

should also be easier to identify.

The spectrum of the critical Hamiltonian with h0 = h2 = 1, β1 =
√

2, β2 =

−1 and N = 20 is shown in Figure 5.1. The eigenstates are clustered in

groups of different energies. A zoom-in into the lowest group is shown in

Fig. 5.2 (page 38), and a zoom-in into the second group is show in Fig. 5.3

(page 40).

Focusing on the lower group, the zero-energy states are doubly degenerate

36
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Figure 5.1: An energy plot for β1 =
√

2, β2 =−1, N = 20 and h0 = h2 = 1.
The states are clustered in “groups” of different energies.

(for L ≤ 10), as required from the construction of the Hamiltonian. The

states with different angular momenta are seemed to be divided into almost

degenerate bands. Specifically, the degenerate zero-energy states form two

ground-bands and the first two excited bands (indicated by disk and plus-sign

in Fig. 5.2) resembles γ-bands. The states with higher energies (indicated by

stars), have the correct angular-momenta for the γ2-bands (with K = 0, 4).

The next group of states, depicted in Fig. 5.3 also seems to be composed

of (almost) degenerate bands. The lowest states, indicated by a disk, and the

states indicated by a star have even angular momentum, which resembles a

K = 0 band (for example a β-band), while the states indicated by plus-sign

have angular momenta L = 2, 3, . . . , and resembles a band with K = 2 (for

example a γ- or βγ- band).

To further test if these states can be considered a band, the inter- and

intra- band transitions were calculated using the transition operator T (2) of

Eq. (1.13) with χ = 0. Some values for the transitions are given in Table 5.1

(page 39). It is seen that the ground-, γ- and β- bands intraband transitions

are much stronger than the interband transitions. The transitions between
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Figure 5.2: L-Energy plot for N = 20. This is a zoom-in on the lowest group
of states from Fig. 5.1

the states in the γ2-bands (for clarity, these are marked as two separate

bands, see Fig. 5.2), however, do not indicate a clear band structure of two

bands. The Alaga rules were also computed for the transitions, Table 5.2

shows a comparison between some of the E2 transition-relations with the

accompanied Alaga predictions. This further supports the notion bands-

structure, as depicted earlier (Fig. 5.2 and Fig. 5.3).
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E2 Transitions
6→ 4 4→ 2 2→ 0

g1 → g1 154.783 142.028 100
g2 → g2 174.588 160.010 112.586
γ1 → γ1 113.030 46.4573 −
γ2 → γ2 115.944 51.8093 −
β1 → β1 131.775 121.617 85.900
β2 → β2 145.025 130.303 91.338
βγ → βγ 90.9188 47.0475 −

6→ 4 4→ 2 2→ 0 6→ 6 4→ 4 2→ 2

g1 → g2 0.0001 0.0001 0.0004 0 0 0.0001
γ2 → g2 1.6673 2.4211 4.7641 8.8868 8.9700 7.5180
γ2 → g1 0.0757 0.0735 0.1658 0.4567 0.3525 0.1592
γ2 → γ1 0.0011 10.561 − 13.838 3.6977 23.108
β2 → βγ 0.4053 1.1401 − 0.6955 0.8142 0.1878
β2 → β1 0 0.0018 0.0241 0.02 0.0278 0.0689
βγ → β1 1.4599 1.7620 2.9448 5.0638 5.0717 4.1974

Table 5.1: Some of the interband and intraband transitions. For the critical
Hamiltonian. Here N = 20 and χ = 0. The left column specify the bands
and the upper row specify the angular momentum. It can be seen that the
intraband transitions (upper half of the table) are stronger than the interband
(lower half). The transitions are normalized by 21 → 01 = 100

E2 Transition Relations
K = 0 g1 g2 β1 β2 Alaga

6→4
4→2

1.0898 1.0911 1.084 1.113 1.1014
4→2
2→0

1.4203 1.4212 1.4159 1.4266 1.4286

K = 2 γ1 γ2 γβ Alaga
6→4
4→2

2.433 2.2379 1.932 1.9737

Table 5.2: Comparison of the E2 intraband transition relations with the
corresponding Alaga values. For the upper table K = 0 and for the lower
table K = 2. Here χ = 0
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Figure 5.3: L-Energy plot for N = 20, this is a zoom-in into the second
group of states from Fig. 5.1

5.1 Identification of the Bands

The normal modes expansion for the intrinsic three-body Hamiltonian were

discussed in Section 4.4, and the energies for the bands were given in Eq. (4.19).

Using the values h0 = h2, β1 =
√

2, β2 = −1 for the critical Hamiltonian, the

normal modes energies are:

E(nβ1 , n
β
2 , n

γ
1 , n

γ
2 ;β1 =

√
2, β2 = −1) =

N2(6.91nβ1 + 8.10nβ2 + 0.57nγ1 + 0.64nγ2)
(5.1)

We see that there is an order of magnitude difference between the β and γ

coefficients. This can explain the groups of states discussed earlier (Fig. 5.1).

The lower groups is composed of the states belonging to the ground and

γ bands and their overtones: γ1γ2, γ
2
1 , . . . (Fig. 5.2). The next group is

composed of the states belonging to the β-bands along with the γ overtones:

β1, β2, β1γ1, .. (Fig. 5.3). The third group is composed of states with β2-bands

and so on.
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Energy/N2

N γ1 γ2 β1 β2 β1γ1 Ebarrier/N
2

10 0.40 0.51 6.03 − − 0.30
15 0.45 0.51 6.41 6.86 6.95 0.50
20 0.48 0.54 6.56 7.19 7.10 0.71
25 0.51 0.56 6.66 7.38 7.20 0.91
29 0.52 0.57 6.69 7.50 7.24 1.08
34 0.53 0.59 6.73 7.57 7.29 1.29
40 0.53 0.60 6.76 7.66 7.32 1.54
εi,j 0.57 0.64 6.91 8.10 7.49

Table 5.3: Exact results for the energies of each band and each N (divided
by N2). This should be compared with the corresponding normal-mode
coefficients, εi,j, of Equation (4.19). The energies of the βγ-band corresponds
to ε1,β + ε1,γ and the numerical energy is computed from the eigenstate with
the lowest angular-momentum. The right-most column shows the value of
the energy barrier of Section 4.3, divided by N2

The approximated energies in Eq. (5.1) also helps to identify which γ and

β bands belongs to which minima in the energy surface. Since the energies

related with β =
√

2 are lower than those of β = −1, we associate the γ1

and β1 bands with the β =
√

2 minimum and the γ2 and β2 bands with

β = −1 minimum. This association can be made for different N ’s. The

normal modes expansion should provide better approximation as N grows.

A comparison of the exact and normal-mode energies for various N is given

in Table 5.3.

To gain further insight into the bands structure and to affirm the asso-

ciation of the various bands with their corresponding minima, it is advanta-

geous to decompose the various bands into the SU(3) and SO(6) dynamical-

symmetry chains. As mentioned in Section 1.5, the condensate |−1, 0;N〉
has a good 〈σ = N〉 SO(6)-label, and the condensate with |

√
2, 0;N〉 has

a good (λ = 2N,µ = 0) SU(3)-label. These condensates furnish the two

ground-bands g1 and g2 with pure character. The decomposition of these

bands into the SO(6) and SU(3) symmetries is shown in Fig. 5.4.

The decomposition of the two γ-bands is shown in Figures 5.5–5.6. It
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Figure 5.4: The decomposition of the two ground-bands. The left figure
depicts the probability of the g1-band into the (λ, µ) irrep. The right figure
depicts the probability of the g2-band into the 〈σ〉 irrep. Here N = 20, and
the numbers 0, 2, 4, . . . are different angular momenta

can be seen that the γ1-band has a coherent decomposition in the SU(3)

basis, and a dominant (λ = 36, µ = 2) component. This is reflected in the

corresponding intrinsic state, since in the large-N limit, the SO(3) projected

states of the β and γ intrinsic states of β =
√

2, defined in Eq. (1.7), have a

good (λ = 2N − 4, µ = 2) label [22].

The γ2-band is coherent when decomposed into the the SU(3) basis, which

is again expected from states that belong to the same band. The decompo-
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Figure 5.5: The probability of the γ1-band to be in the (λ, µ) sub-spaces.
These are the states marked by disks in Fig. 5.2
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Figure 5.6: Probability of the γ2-band to be in the (λ, µ) sub-spaces of SU(3)
and 〈σ〉 sub-spaces of SO(6).

sition into the SO(6) basis show that the states have dominant 〈σ = 20〉
component. Again, this is reflected in the γ-band that corresponds with

β = −1. These states have a probability of (N − 1)/(N + 1) to be in the

〈σ = N〉 subspace, and a probability 2/(N + 1) to be in the 〈σ = N − 2〉
subspace (see Appendix B).

A decomposition of the two β-bands can also be carried out. The dom-

inant (λ, µ) component of the β1-band (β =
√

2) is (36, 2) and has a prob-

ability of 89%-90%. It is mixed with the (34, 0) component (8.3%-9.7%).

This fits with the interpretation of the β1-band as being associated with the

β-band that belongs to the β =
√

2 minimum. The decomposition of the

β2-band into the SO(6) symmetry shows that the states have a probability

of 94%-96% to be in the 〈σ = 18〉 subspace, and 0.3%-0.45% to be in the

〈σ = 20〉 subspace, with the exception of the L = 10 state which is more

strongly mixed and has an additional components of 〈10〉 with a probabil-

ity of about 10%. Again, this corresponds with the states that are projected

from the intrinsic β state associated with the β = −1 minimum. These states

have a probability of (N − 1)/(N + 1) to be in the 〈σ = N − 2〉 subspace,

and a probability of 2/(N + 1) to be in the 〈σ = N〉 subspace (see Appendix
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B). The βγ-band is mainly composed of the (32, 4) component (76%-80%)

and the (30, 2) components (17%-21%).

The intrinsic Hamiltonian, with the parameters β1 =
√

2 and β2 = −1

exhibits an interesting phenomena. This Hamiltonian provides a coexistence

of two partial dynamical symmetries of two non-compatible chains, SU(3)

and SO(6). The intrinsic state |−1, 0;N〉 provides an SO(6)-PDS type III:

the states projected from it have the SO(6) 〈σ = N〉 label, but do not

have a good (τ) label. The intrinsic state |
√

2, 0;N〉, on the other hand,

provides an SU(3)-PDS type I: the states projected from it have the SU(3)

(λ = 2N,µ = 0) label. The other eigenstates of the intrinsic Hamiltonian do

not necessarily posses any of these symmetry labels. The decomposition of

a few non-PDS states are shown in Fig. 5.7. This should be compared with

the states from Fig. 5.4.

In this section we have inspected the spectrum and transitions of the

intrinsic part of the three-body critical Hamiltonian with a prolate-oblate

coexistence. This Hamiltonian, by construction, has two degenerate ground-

bands. The spectrum of the Hamiltonian showed, beside the ground-bands,

clear indications of two γ- and two β- bands. The transitions between the

states were also calculated and showed further indications that these states

can be considered as bands. We used the approximated energies from the nor-

mal modes expansion to identify the bands with their corresponding minima.

We decomposed the wave-functions of the band members into the SO(6) and

SU(3) dynamical symmetry basis to furthermore understand their structure.

It was seen that the γ- and β- bands states are coherent and their decompo-

sition is similar to that of the γ- and β- bands obtained by projection of the

intrinsic excited states. Lastly, we have shown that for the specific values of

β1 and β2 chosen for this section, the intrinsic Hamiltonian presents two PDS

of different symmetries. This is a more complex situation than encountered

with the two-body IBM (see Section 1.5), where the choice of β0 can produce

either SU(3)-PDS or SO(6)-PDS, but not both of them together.
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(a) Decomposition into the SU(3) (λ, µ) dominant components
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(b) Decomposition into the SO(6) 〈σ〉 dominant components

Figure 5.7: Decomposition of some eigenstates of the intrinsic Hamiltonian
into dominant irreps of both the SU(3) and SO(6) symmetries. Different
colors indicate different states. This should be compared with the states
from Fig. 5.4



Chapter 6

Collective Terms for the

Critical Hamiltonian

Up to this point only the intrinsic part of the critical Hamiltonian was con-

sidered. To continue further, we need to consider the kinetic terms, which do

not affect the potential. In this section the collective operators will be added

to the intrinsic critical Hamiltonian, and their affect on the spectrum and

transitions will be analyzed. The collective operators we choose to employ

are the three-body collective terms from [11]. The collective Hamiltonian

can be written as

Hcol =c3(N − 2)(ĈO(3) − 6n̂d) + c5(N − 2)(ĈO(5) − 4n̂d)+

c6(N − 2)(ĈO(6) − 5N) + d3(n̂d − 2)(ĈO(3) − 6n̂d)+

d5(n̂d − 2)(ĈO(5) − 4n̂d)+

d6[(n̂d − 1)(ĈO(6) − 5N)− (ĈO(5) − 4n̂d) + h.c.]

(6.1)

here ci, di are parameters. The terms multiplied by ci are the three-body

parts of N̂Ĉg, g = O(3), O(5), O(6) and the terms multiplied by the di are

proportional to the the three body parts of n̂dCg +h.c. The complete Hamil-

46
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tonian, containing the intrinsic and collective collective terms takes the form

H = h0R
†
0R0 + h2R

†
2 · R̃2 +Hcol (6.2)

As a result of adding the collective terms, the two ground-bands will no

longer be degenerate. The wave-functions, energies and inter- and intra-

band transitions of these states will change. In the following section, each

of the collective terms is added separately to the critical Hamiltonian. Table

6.1 shows the energies of the critical Hamiltonian with the addition of the

collective terms. The coefficient of the collective terms were chosen to be

large enough to change the spectrum, but small enough so that the band

structure is not ruined and the two ground-bands show “physical” behavior

(for example E(02) < E(22)).

The energies of the two ground-bands can be compared with the signa-

tures of the rigid-rotor, spherical-vibrator [12] and X(5) [31]. Table 6.2 lists

the intraband energy relations for the different collective terms. It is seen

that the two ground-bands arising from the c3 term are very close to rigid-

rotor, the bands arising from the d3 collective term also seems to resemble the

rigid-rotor. This can be explained as the collective operator related with c3

is composed of a three-body rotational term, NĈO(3) along with a two-body

Nn̂d term. In the large-N limit, the three-body term dominates. A similar

explanation can be done for the d3 term, but here the dominant three-body

term is n̂dĈO(3).

It can be seen from Table 6.2, that the R values for the first band is

decreasing and moves further away from the rigid-rotor region towards the

spherical vibrator, as the collective terms are changed from c3 to c5 to c6.

This is also true for the di terms, where i = 3, 5, 6. The R values for the

second band, however, are seem to constantly increase with the di coefficients,

but not so for the ci coefficients, where the biggest values are for the c5

term. For both bands, the R values are smaller for the ci term, than for its

corresponding di term. With the exception of the c5 and d5 term.

It is interesting to test whether the energies of the two ground-bands, for
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c3 = 0.4 c5 = 0.4 c6 = 0.02

E(02) 3.641 [3.602] 4.178 [3.390] 0.995 [0.779]
E(22) 4.613 [4.573] 4.407 [4.313] 1.547 [1.437]
E(41) 3.333 [3.333] 2.873 [3.250] 2.636 [2.701]
E(42) 6.880 [6.839] 6.247 [6.532] 3.509 [3.561]
E(61) 6.999 [6.999] 5.660 [6.758] 5.007 [5.211]
E(62) 10.445 [10.404] 9.012 [9.981] 6.655 [6.933]
E(81) 11.998 9.299 8.146
E(82) 15.311 12.605 10.783

d3 = 0.4 d5 = 0.6 d6 = 0.2

E(02) 6.862 [6.832] 7.925 [6.575] 4.820 [3.852]
E(22) 7.497 [7.472] 8.294 [7.215] 5.055 [4.723]
E(41) 3.346 [3.352] 3.24 [3.329] 2.967 [3.288]
E(42) 9.014 [9.006] 9.858 [8.759] 6.876 [6.832]
E(61) 7.067 [7.099] 6.713 [7.019] 5.944 [6.891]
E(62) 11.492 [11.523] 12.307 [11.266] 9.702 [10.212]
E(81) 12.214 11.373 9.89
E(82) 15.056 15.703 13.526

Table 6.1: The exact [approximated] energies for the critical Hamiltonian
with various collective terms. The approximation is discussed at Section 6.1.
For each term E(01) = 0 and E(21) = 1. Here h0 = h2 = 1, β1 =

√
2, β2 = −1

the different operators, can be interpreted as resulting of a non-rigid body.

This is done by comparing the energies of each of the bands with the equation

αL(L+ 1) + β[L(L+ 1)]2, where β is expected to be negative for a non-rigid

body. Fitting the different two bands with this equation, the values for α, β

and the RMS are given in Table 6.3. It is noted that we cannot always

attribute the resulting fit to a non-rigid body, as the β coefficient turns out

to be positive for at least one of the bands for all of the collective terms,

except c3, in which it is almost zero.

The inter- and intra- band transitions of the two ground-bands with the

presence of the collective terms are shown in Table 6.4. The intraband tran-

sitions are usually stronger than the interband, and the band structure seems

to persist in the presence of the collective terms. The c6, and to some ex-
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c3 = 0.4 c5 = 0.4 c6 = 0.02 d3 = 0.4 d5 = 0.6 d6 = 0.2
R41/21 3.333 2.873 2.636 3.346 3.24 2.967
R61/21 6.999 5.660 5.007 7.067 6.713 5.944
R81/21 11.998 9.299 8.146 12.214 11.373 9.89
R42/22 3.332 9.035 4.554 3.389 5.238 8.749
R62/22 7.000 21.1092 10.2536 7.29134 11.8753 20.774
R82/22 12.006 36.780 17.732 12.904 21.079 37.047

rigid-rotor spherical-vibrator X(5)
R4/2 3.33 2 2.91
R6/2 7 3 5.45
R8/2 12 4 8.51

Table 6.2: The energy relations for the two bands. Should be com-
pared with the spherical-vibrator, rigid-rotor [12] and X(5) [31], RLi/2i =
[E(Li)− E(0i)]/[E(2i)− E(0i)]

g̃1 c3 = 0.4 c5 = 0.4 c6 = 0.02 d3 = 0.4 d5 = 0.6 d6 = 0.2
α 0.167 0.147 0.135 0.166 0.163 0.151
β(10−4) 0 −2.51 −3.08 0.45 −0.73 −0.19
RMS 0.00007 0.08673 0.13981 0.00043 0.01560 0.06929

g̃2 c3 = 0.4 c5 = 0.4 c6 = 0.02 d3 = 0.4 d5 = 0.6 d6 = 0.2
α 0.162 0.102 0.126 0.105 0.094 0.099
β(10−4) 0 2.22 1.47 1.19 2.01 3.08
RMS 0.00208 0.24881 0.14342 0.00042 0.12769 0.23868

Table 6.3: The α, β and the RMS values for the fitting of the equation
αL(L+ 1) +β(L(L+ 1))2 to the ground-bands energies. The energies of L =
0, 2, 4, 6, 8 were fitted. Here g̃i are the ground-band of the full Hamiltonian.
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tent also the d6 terms, are the only terms that provide substantial interband

transitions. Focusing on the ci terms, and comparing the transitions of the

new ground-states. We see that the intraband transitions for the c3 term,

are the closest to those obtained from the intrinsic Hamiltonian, while those

that corresponds with c6 are usually the furthest. The same holds for the d3

and d6 terms.

c3 = 0.4 c5 = 0.4 c6 = 0.02 Intrinsic

22 → 01 0.000 [0.000] 0.036 [0.004] 0.061 [0.099] 0.000
22 → 02 1.147 [1.126] 0.981 [1.123] 1.002 [1.013] 1.126
22 → 21 0.000 [0.000] 0.254 [0.023] 1.296 [1.271] 0.000
22 → 41 0.000 [0.000] 0.000 [0.000] 0.287 [0.343] 0.000
41 → 21 1.419 [1.420] 1.435 [1.423] 1.258 [1.271] 1.420
42 → 21 0.000 [0.000] 0.004 [0.000] 0.208 [0.239] 0.000
42 → 22 1.628 [1.600] 1.506 [1.602] 1.355 [1.391] 1.600
42 → 41 0.000 [0.000] 0.170 [0.014] 0.291 [0.184] 0.000
42 → 61 0.000 [0.000] 0.004 [0.000] 0.031 [0.022] 0.000
61 → 41 1.545 [1.548] 1.585 [1.551] 1.514 [1.571] 1.548
62 → 42 1.774 [1.746] 1.696 [1.748] 1.688 [1.764] 1.746
62 → 61 0.000 [0.000] 0.166 [0.011] 0.066 [0.036] 0.000

d3 = 0.4 d5 = 0.6 d6 = 0.2 Intrinsic

22 → 01 0.000 [0.000] 0.010 [0.000] 0.030 [0.002] 0.000
22 → 02 1.154 [1.126] 1.066 [1.125] 0.998 [1.124] 1.126
22 → 21 0.000 [0.000] 0.043 [0.003] 0.191 [0.014] 0.000
22 → 41 0.000 [0.000] 0.001 [0.000] 0.001 [0.000] 0.000
41 → 21 1.422 [1.420] 1.430 [1.420] 1.434 [1.422] 1.420
42 → 21 0.000 [0.000] 0.001 [0.000] 0.003 [0.000] 0.000
42 → 22 1.639 [1.600] 1.564 [1.600] 1.516 [1.601] 1.600
42 → 41 0.000 [0.000] 0.034 [0.002] 0.139 [0.009] 0.000
42 → 61 0.000 [0.000] 0.004 [0.000] 0.006 [0.000] 0.000
61 → 41 1.552 [1.548] 1.578 [1.548] 1.585 [1.550] 1.548
62 → 42 1.788 [1.746] 1.740 [1.746] 1.701 [1.747] 1.746
62 → 61 0.000 [0.000] 0.047 [0.003] 0.151 [0.009] 0.000

Table 6.4: E2 transitions for the two ground-bands for various collective
terms. Here χ = 0 and 21 → 01 normalized to 1. Approximate results
are shown in square brackets, and discussed in Section 6.1. The right col-
umn provides the E2 transitions for the intrinsic Hamiltonian, where it is
understood that the Li states belong to the gi band of Section 5.1
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6.1 Two-State Mixing

Without the addition of the collective terms, the critical Hamiltonian sup-

ports two degenerate ground-bands. For each even-L, there are two (de-

generate) states with zero energy that corresponds with the minima of the

energy-surface. It is interesting to see if the effect of the addition of the col-

lective terms on the ground-bands can be interpreted as a two-state mixing

between the two (formerly) degenerate states (of each L).

It is the purpose of this section to see if the spectrum and transitions pre-

sented in the last section can be understood in terms of this mixing. The two

state mixing is achieved by degenerate perturbation theory that involves the

two degenerate states for each even-L separately. To find the new eigenstates

within this approximation, it is enough to calculate the “matrix element” of

the Hamiltonian between the two L-projected states of the original ground-

bands:

〈βi;N,L|H|βj;N,L〉 i, j = 1, 2 (6.3)

Here |βi;N,L〉, L = 0, 2, 4, . . . are the (normalized) ground-band states that

are projected from the βi condensate. When the expression in Eq. (6.3)

is found, then the Hamiltonian matrix, restricted to the subspace of the

two ground-bands, can be formed and the new eigenstates can be found.

We note that by definition, the intrinsic Hamiltonian annihilate the ground-

states Hint|βi;N〉 = 0. Since Hint is an SO(3) scalar, it also annihilates

the L-projected states. As a consequence, the calculation of Eq. (6.3) is

reduced to the collective terms in the Hamiltonian (Hcol). The calculation

of Eq. (6.3) for each of the collective terms is given in Appendix C.1. The
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results, in terms of the parameters of Hcol in Eq. (6.1) are:

m12 ≡ 〈β1;N,L| H |β2;N,L〉 =

+ c3(N − 2)[L(L+ 1)SN0 − 6DN
1 ]

+ c5

{
L(L+ 1)(DN

1 − 2SN0 )− 6(DN
2 −DN

1 )
}

+ c6(N − 2)(DN
2 − (β1β2)2 SN2 )

+ d3

{
(N − 2)(DN

2 − (β1β2)2 SN2 )−
( ΓN

ΓN−1

)−1/2

(DN−1
2 − (β1β2)2 SN−1

2 )
}

+ d5(N − 2)[N(N − 1)SN0 − (1 + β2
1)(1 + β2

2)SN2 ]

+ d6 × 2
{

(N − 1)(N − 2)[NSN0 − SN1 ]− (1 + β2
1)(1 + β2

2)[(N − 2)SN2 − SN3 ]
}

m11 ≡〈β1;N,L| Hcol |β1;N,L〉, m22 ≡ 〈β2;N,L| Hcol |β2;N,L〉
(6.4)

where it should be noted that SNn , D
N
n and ΓN depend on β1, β2 and L. They

are defined by:

Γ
(L)
N (β) =

1

N !

∫ 1

0

dx[1 + β2P2(x)]NPL(x)

ΓN ≡ Γ
(L)
N (β1)Γ

(L)
N (β2)

SNn ≡ 〈β1, L|(s†)n(s†)n|β2, L〉 =
Γ

(L)
N−n(

√
β1β2)

[Γ
(L)
N (β1) Γ

(L)
N (β2)]1/2

DN
1 ≡ 〈β1;N,L|nd|β2;N,L〉 = NSN0 − SN1

DN
2 ≡ 〈β1;N,L|(nd − 1)nd|β2;N,L〉 =

(N − 1)SN0 − 2(N − 1)SN1 + SN2

(6.5)

with PL(x) being the Legendre polynomials (with even-L). A slight compli-

cations arises from the fact that |βi;N,L〉 are not orthogonal. This can be
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taken into account by transforming into orthogonal basis

|ψ(L)
1 〉 = |β1;N,L〉

|ψ(L)
2 〉 = (1− r2

12)−1/2(|β2, L〉 − r12|β1;N,L〉)

r12 ≡ 〈β1;N,L|β2;N,L〉

(6.6)

and the Hamiltonian 2× 2 matrix takes the form

K11 = m11, K12 = (1− r2
12)−1/2(m12 − r12m11)

K22 = (1− r2
12)−1(m22 − 2r12m12 + r2

12m11)
(6.7)

from which eigenenergies and eigenstates can be found.

To recap, Eq. (6.7) is a matrix representation of the collective Hamil-

tonian for any L, in the subspace spanned by the two ground-band states

|β1;N,L〉 and |β2;N,L〉. The eigenvalues and eigenstates of this matrix are

the approximated new lowest energies and eigenstates for the full Hamilto-

nian of Eq. (6.2), containing both the intrinsic and collective terms.

The approximation for the energies is shown in Table 6.1 in square brack-

ets. To test the energies approximation for each of the collective terms, the

RMS values for each terms is shown in Table 6.5. It is seen that the best

approximation is achieved for the terms that correspond with c3 and d3.

c3 = 0.4 c5 = 0.4 c6 = 0.02 d3 = 0.4 d5 = 0.6 d6 = 0.2
0.032871 0.706836 0.175397 0.0245289 0.946905 0.620367

Table 6.5: The RMS values of the energies for each collective term. Each
column specify collective term and the RMS value, calculated by using the
exact and approximated energies in Table 6.1

Each exact state |Li〉 of the critical Hamiltonian can be written as a com-

bination of the two L-projected states, |βi;N,L〉, i = 1, 2, and another state,

orthogonal to both. That is |Li〉 = α1|β1;N,L〉 + α2|β2;N,L〉 + γ|O;N,L〉,
where 〈O;N,L|βi;N,L〉 = 0. The parameter γ2 shows to what extent the

two-state approximation is valid. The ratio between α1 and α2 quantify

the mixing. Table 6.6 gives the exact [approximated] values for some of the
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c3 = 0.4 c5 = 0.4 c6 = 0.02

α2
1 α2

2 γ2 α2
1 α2

2 γ2 α2
1 α2

2 γ2

01 0.992 [1.0] 0.000 [0.0] 0.008 0.793 [0.985] 0.097 [0.014] 0.108 0.465 [0.438] 0.528 [0.557] 0.003
02 0.000 [0.0] 0.998 [1.0] 0.002 0.132 [0.015] 0.833 [0.986] 0.038 0.534 [0.562] 0.470 [0.443] 0.001
21 0.992 [1.0] 0.000 [0.0] 0.008 0.862 [0.996] 0.036 [0.004] 0.102 0.675 [0.708] 0.320 [0.289] 0.002
22 0.000 [0.0] 0.998 [1.0] 0.002 0.046 [0.004] 0.867 [0.996] 0.087 0.323 [0.292] 0.678 [0.711] 0.001

d3 = 0.4 d5 = 0.6 d6 = 0.2

α2
1 α2

2 γ2 α2
1 α2

2 γ2 α2
1 α2

2 γ2

01 0.986 [1.0] 0.000 [0.0] 0.014 0.914 [0.998] 0.015 [0.001] 0.070 0.824 [0.991] 0.072 [0.008] 0.10
02 0.000 [0.0] 0.998 [1.0] 0.002 0.026 [0.002] 0.936 [0.999] 0.039 0.102 [0.009] 0.861 [0.992] 0.04
21 0.987 [1.0] 0.000 [0.0] 0.013 0.925 [0.999] 0.005 [0.000] 0.070 0.877 [0.997] 0.026 [0.002] 0.09
22 0.000 [0.0] 0.998 [1.0] 0.002 0.008 [0.001] 0.927 [1.000] 0.065 0.035 [0.003] 0.880 [0.998] 0.086

Table 6.6: The exact [approximated] decomposition of the two ground-bands
into the non-perturbed ground-band states in the presence of the collective
terms. Each eigenstate is written as |Li〉 = α1|β1;N,L〉+α2|β2;N,L〉+γ|O〉,
where 〈βi;N,L|O〉 = 0. Note that in general α2

1 + α2
2 + γ2 6= 1

states, decomposed into the states mentioned above.

It can be seen that the mixing is small for most of the collective terms,

and at least for the values of the coefficients selected, the probability of the

states to be outside of the subspace spanned by the two states is also small

(for most cases ≈ 1%). The mixing is strong for the L = 0, 2 eigenstates of

the N̂ĈO((6) term. These results can explain the exact energies obtained by

numerical procedure. The fact that γ2 is small for most terms show that the

two-state approximation is valid, and that energies can be obtained by this

approximation. The collective terms seem to split the energies, but they do

not contribute to the mixing between the two states.

The two state mixing can also be used to calculate the approximate E2

intra- and inter- transitions. This is done by writing each of the states |Li〉 as

|Li〉 = αLi
1 |β1;N,L〉 + αLi

2 |β2;N,L〉, where the αi are the coefficients found

using the two-state mixing. With this, the transition probability is (see

Section 1.4):

B(E2;Li → L′j) =

|
∑
m,n

αLi
n (α

L′
j

m )∗
(
〈βm;L′, N ||T (2)||βn;L,N〉(2L+ 1)−1/2

)
|2 (6.8)
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where the terms in the parenthesis are given in Eq. (C.2.11) (eb = 1, see

Appendix C.2 for a detailed calculation).

The exact [approximated] results for the E2 transitions and for the various

collective terms are given in Table 6.4. It can be seen that for some of the

cases, the approximated results do not differ much from the results of the

intrinsic Hamiltonian. This again is a consequence of the fact that most of

the collective terms seem not to mix between the degenerate ground-band

states, and mostly contribute to the energy splitting. The L = 0, 2 states of

the N̂ĈO(6) terms are unique in that sense, as they produce a large mixing

between the states. As a consequence there is a big difference between the

transitions of the intrinsic Hamiltonian and complete Hamiltonian for these

states.



Chapter 7

Conclusions and Outlook

Phase transitions in nuclei are a widely discussed topic. In particular the

coexistence of different phases, as observed in many nuclei, is an interesting

and active topic of research. The two-body IBM Hamiltonian was used to

model many nuclei, but it is not able describe a coexistence between two

deformed minima.

In this work we have set the first steps towards understanding first-order

phase transitions and coexistence of axially-deformed shapes in nuclei, using

the three-body IBM. The main result of this work was to identify the relevant

interactions and build the critical Hamiltonian for a degenerate deformed-

deformed coexistence with three-body terms.

We have used the intrinsic and collective resolution in-order to find the

relevant interactions. The condition R|βi, 0;N〉 = 0 was used on two different

condensates, which allowed us to identify the three-body intrinsic operators

relevant for the deformed-deformed coexistence. With these conditions, we

found that the intrinsic part of the critical Hamiltonian can be written using

two three-body operators:

H = h0R
†
0R̃0 + h2R

†
2 · R̃2

with h0, h2 ≥ 0, where R0 is the a three-boson operator with angular mo-

mentum L = 0, and the R2 operator has angular momentum of L = 2. An

56
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interesting consequence of these results was the ability to combine two dif-

ferent PDS in the same Hamiltonian, namely, Hamiltonian in which part of

the states have an SO(6) symmetry, while part of the states have an SU(3)

symmetry and all the other states are mixed.

The energy-surface of the two operators was thoroughly analyzed (Chap-

ter 4). We found that the R†0R̃0 operator has a ’trajectory’ in the (β, γ) plane

for which its energy is zero. This also reflects in the fact that this operator

annihilates a continuity of condensates, |β, γ = f(β);N〉. The R†2 · R̃2 oper-

ator was found to have only additional other minimum, at β = 0, and the

inclusion of the two terms in the same Hamiltonian was found to give rise

to an energy surface with two minima only: (βi, γ = 0) or (|βi|, γ = π/3) if

βi < 0, with i = 1, 2.

As a result of the energy-surface analysis, and because R†0R̃0 have more

than the required two condensate eigenstates, we have concluded that this

operator cannot describe a critical Hamiltonian by itself. We must require

h2 > 0. The second operator, R†2 · R̃2 however, was found to support a shape

coexistence of three shapes: two deformed and spherical. This is the only

intrinsic operator in the IBM (at least up to three-body interactions) that can

be used to describe such coexistence. As such, this operator is of potential

relevance for heavy nuclei that show coexistence of three shapes (for example
186Pb [6]).

The analysis of the particular energy-surface with h0 = h2 showed that

when the two operators were combined, then the energy-barrier of the crit-

ical Hamiltonian was usually much higher for the prolate-oblate case then

the prolate-prolate (or oblate-oblate) cases. These points should be further

studied for different critical Hamiltonians, as the typical shape coexistence

in nuclei is found to be a prolate-oblate one.

The spectrum and transition of the critical Hamiltonian were also con-

sidered. Except for the two degenerate ground-bands, which are part of the

critical Hamiltonian construction, we were able to identify the two β- and

two γ- bands using an analysis of the spectrum and transitions-strength. A
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comparison with the Alaga rules further confirmed that the ground- and β-

bands are indeed bands with K = 0, and that the γ1, γ2 and γ1β1 bands are

bands with K = 2 (see Figures 5.2, 5.3).

In addition to the spectrum analysis, we have approximated the critical

Hamiltonian via normal modes around each minima. This approach was

used to identify the excited bands with their corresponding minima, and

a wave-function analysis confirmed this identification. The expansion into

normal-modes also gave us some insight about the bandhead energies of the

different bands. It was shown that the ratio between the two γ-bands is

independent of the coefficients h0, h2, and is only affected by the choice of

β1, β2. Furthermore, for a spherical-deformed-deformed situations (h0 = 0),

it was shown that once the ratios between the two β-bands bandhead energies,

and the two γ-band bandhead energies are fixed, then β2
1 , β

2
2 are set.

Lastly, we explored the effect of adding collective terms to the intrinsic

Hamiltonian. The different terms were added separately and their effect

on the spectrum and transitions of the two (formerly degenerate) ground-

bands were considered. Even with the addition of the collective terms, the

energies and transitions showed that the band-structure persists. The two

ground-bands energies and transitions were approximated by using a two-

state mixing approach. This showed a good agreement with the energies and

transitions for most cases, and it was shown that the effect of most of the

collective terms was to split the degeneracy between the two bands, but it

did not tend to mix them. An exception to this behavior appeared with the

collective term that is related with N̂ĈO(6), this term was shown to strongly

mix the two bands L = 0, 2 states.

At this point there are a few important topics that can be studied. The

first is to extend the study of the three-body Hamiltonian away from the crit-

ical point. This work has focused on the critical Hamiltonian, but there is a

need to study the full evolution of the QPT. A second goal is to examine can-

didate nuclei, based on the derived signatures. Another interesting problem

that remains open is to find the constrains on the most-general three-body
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energy surface, such that the surface supports two degenerate minima. This

approach can be used to employ the full Hamiltonian directly.
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Appendix A

Critical Hamiltonian Energy

Surface

This section contains the analysis of the two energy surfaces. For complete-

ness, the hessian along the γ = 0 line, for the general three-body energy

surface is given:

∂2E

∂β2

∣∣∣∣
γ=0

= 2
β7C + 3β6(D − 3(A+B))

(1 + β2)5

+ 2
β5(6E − 13C) + 5β4(3(A+B −D) + 2F )

(1 + β2)5

+ 2
+5β3(2C − 3E) + β2(6D − 13F ) + 3βE + F

(1 + β2)5

∂2E

∂γ2

∣∣∣∣
γ=0

=
9β3 (β2(2βB + C) + E)

(1 + β2)3

∂2E

∂β∂γ

∣∣∣∣
γ=0

= 0

(A.0.1)

A.1 R†0R0 Energy Surface

This section gives a derivation of the important features of the R†0R0 energy

surface. First we identify that this energy surface has a trajectory in the

(β, γ) plane with zero energy, and find this trajectory. then the other extrema
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points are identified. Lastly we find the energy barrier between the global

minima.

Inspecting the energy surface equation (4.4), and defining Γ = cos(3γ) we

solve for Γ = f(β) such that E0(β, γ) = 0. For 0 ≤ γ ≤ π/3 we must require

cos(3γ) ≡ Γ =
β2(β2

1 + β1β2 + β2
2)− β2

1β
2
2

(β1 + β2)β3
, |Γ| < 1 (A.1.1)

Since Γ(β) is a continuous function of β, it is enough to test Γ at the bound-

aries Γ = −1, 1 to understand for which values of β we have a solution. The

values of β for which Γ = ±1 are known from the energy-surface equation

with γ = 0 (4.6). These are β = β1, β2 for Γ = 1, and β = −β3 for Γ = −1

(the minus sign is due to the fact that here β is treated as a radius variable

and we use γ = π/3). Differentiating Eq. (A.1.1) with respect to β and

plugging the roots, we obtain

dΓ

dβ
|β=−β3 =

(β1 + β2)(2β1 + β2)(2β2 + β1)

β2
1β

2
2

dΓ

dβ
|β=β2 =

(β1 − β2)(2β1 + β2)

β2
2(β1 + β2)

(A.1.2)

We see that at β = −β3 the derivative is always positive, while for the

two other roots it is positive only for the smaller root and negative for the

bigger one.

The last two equations are to be interpreted as follows: there are two non-

connected trajectories in the (β, γ) plane for which E0(β, γ) = 0. Choosing

0 < β2 < β1, there is one trajectory that begins at (β1, 0) and continues

with a growing β towards the (∞, π/6) point. The other trajectory connects

between the (−β3, π/3) and the (β2, 0) points (see Fig. 4.1, p. 25).

The next step in analyzing the energy surface is to find the other extrema

points for the surface. Differentiating Eq. (4.4) with respect to γ it is seen

immediately that the extrema points must lie either on the trajectories al-

ready discussed, or on the γ = 0, π/3 line. Setting γ = 0, the solutions for

the other extrema is found by solving ∂E0(β, 0)/∂β = 0, where the β < 0
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solutions are identified with γ = π/3, β → |β|. Differentiating with respect

to β we find

∂E0(β, 0)/∂β = 0⇒

β(β − β1)(β − β2)(β − β3)F (β, β1, β2) = 0 (A.1.3)

with

F (β; β1, β2) = β2
(
β2

1 + β1β2 + β2
2

)
+ 3β(β1 + β2)− 2

(
β1β2 + β2

2 + β2
1

)
A(β) > 0

(A.1.4)

Eliminating the three known minima solutions (β1, β2, β3), we find the

three extrema

β0 = 0 , β
+/−
F =

−3(β1 + β2)±∆

2(β2
1 + β1β2 + β2

2)

∆ =
√

9(β1 + β2)2 + 4(β2
1 + β1β2 + β2

2)(2(β2
1 + β1β2 + β2

2) + 3β2
1β

2
2)

(A.1.5)

Fixing γ = 0 and considering the energy surface as a function of β only

Ẽ(β) = E0(β, 0), the solution β = β+
F is positive, and so it must satisfy

β2 < β+
F < β1 and be a maximum of Ẽ(β). The β = 0 extremum is a

maximum as well. The last extremum β = β−F fulfill β−F < β3 and is also a

maximum of Ẽ(β). This is since it is evident from Eq. (A.1.5) that β3 < 0,

in addition it cannot be an inflection point because this requires that the

derivative of the energy surface with respect to β in Eq. (A.1.3) will be

proportional to (β − β3)2n, with n integer. As a consequence it cannot be

positioned between β3 and β0.

To test whether the points (β0, 0), (β+
F , 0), (β−F , 0) are real maxima, the

Hessian should be calculated. It is already diagonal for γ = 0 [11], accord-

ingly it is enough to calculate d2E0/dγ
2. The result is

∂2E0

∂γ2
|γ=0 =

−36β3(β − β1)(β − β2)(β − β3)

35(1 + β2)3
(A.1.6)
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which shows that β+
F is a saddle and β−F is a maximum (see Fig. 4.1).

That the second derivative of the energy surface with respect to γ is

zero for β = βi (i = 1, 2, 3) is a consequence of the zero-energy trajectories

described above.

The last result which is of interest for the current section is the energy

barrier between the global minima. From the analysis of the global minima

we see that such barrier does not exist between the points (β2, 0) and (β3, 0).

To find the barrier between the two minima (β1, 0) and (β2, 0), we note that

the function E0(β, γ) where β ∈ (β2, β1) is monotonically increasing in γ.

Furthermore, any trajectory between the two minima must cross the arc

(β, γ(t)), t ∈ [0, π/3] where β is fixed such that β2 <β <β1. Using this fact

it is clear that the energy barrier is located at (β+
F , 0), which is the highest

point on the line γ = 0 that connects the two points.

A.2 R†2 · R̃2 Energy Surface

This section derives the properties of the extrema points and the location of

the energy barrier. The energy surface is monotonic in γ, and the condition

for the extrema points read

∂E2(β, γ)

∂β

∣∣∣∣
γ=0

= 0

β(β − β1)(β − β2)
(
β3(β1 + β2) + β2(3− 2β1β2)− 2β(β1 + β2) + β1β2

)
(1 + β2)(β1 + β2)

= 0

(A.2.1)

The three unknown extrema are the solutions of the equation

β3(β1 + β2) + β2(3− 2β1β2)− 2β(β1 + β2) + β1β2 = 0 (A.2.2)

There are three global minima 0, β2, β1, and as such at least two maxima

must be positioned between them. Denoting the two maxima βm1 , β
m
2 , this

leaves the third extrema βm3 unknown. It will now be shown that βm3 is a
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maximum.

First, βm3 cannot be an inflection point. This requires a Eq. (A.2.2) to

be proportional to (β − βm3 )2. In addition, it cannot be a minimum, because

then there would have been two minima without a maximum between them.

It follows that βm3 is a maximum. It must be that βm3 > max(β1, β2, 0) or

βm3 < min(β1, β2, 0) (otherwise there would be two adjacent maxima without

a minimum between them). The sign of βm3 can be found from the equation

−βm1 βm2 βm3 =
β1β2

β1 + β2

(A.2.3)

For 0 < β2 < β1 then βm3 < 0. For β2 < 0 < β1 then the sign of βm3 depends

on the expression β1 + β2: If β1 + β2 > 0, then βm3 < 0, while for β1 + β2 < 0

we have βm3 > 0 (this is also evident from the symmetry discussed in Section

4.2).

The next section will deal with the energy barrier. The energy surface is

E2(β,γ; β1, β2) = N(N − 1)(N − 2)×
2β2 {β4 − 2 (β1 + β2) (β2 + β1β2) β cos 3γ + (β2

1 + 4β2β1 + β2
2) β2 + β2

1β
2
2}

7 (1 + β2)3 (β1 + β2)2

(A.2.4)

We see that for a fixed β, the energy surface is a monotonic function of γ,

either increasing or decreasing.

For the case 0 < β2 < β1 (where the two minima are positioned along

the γ = 0 line), the energy surface is always increasing in the positive γ

direction, and so the energy barrier must lie on the γ = 0 line. It is located

in the (βm1 , 0) point. This expression can be calculated, but its analytic form

is complicated.

For the second case, where β2 < 0 < β1 and β1 > |β2|, the energy de-

creases in the positive γ direction for β ∈ [−β2,
√
|β1β2|) and increases in the

positive γ direction for β ∈ (
√
|β1β2|, β1]. Consequently, if the system moves

between the two minima along the line that connects between (−β2, π/3) and
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Γ

Β

(a) Negative and positive minima. The
energy barrier is E2(

√
|β1β2|, and is lo-

cated on the arc β =
√
|β1β2|, γ =

arbitrary

Γ

Β

(b) Two positive minima. The energy
barrier is located at (β = βm1 , γ = 0), and
βm1 is the biggest solution of Eq. (A.2.2)

Figure A.2.1: R†2 · R̃2 energy-surface. The dashed line shows the trajectory
that passes between the two minima and through the energy barrier.

(
√
|β1β2|, π/3), the arc (

√
|β1β2|, γ), γ ∈ [0, π/3] and the line that connects

between the points (β1, 0) and (
√
|β1β2|, 0), see Fig. A.2.1. then the highest

point along this trajectory will be the energy barrier. This point is found, as

explained above, on the β =
√
|β1β2| arc. The energy at this point is

Ebarrier = E(
√
|β1β2|, γ; β1, β2) = N(N − 1)(N − 2)

2(β1β2)2

7(1 + |β1β2|)3
(A.2.5)



Appendix B

O(6)-〈σ〉 Decomposition of the

Intrinsic States

The normal-mode expansion allows to define the β- and γ- bands around each

minima by SO(3) projection from the intrinsic states defined in Eq. (1.7).

This section aims to show the decomposition of the β and γ intrinsic states

for β = −1, γ = 0 into the SO(6) σ-components

The intrinsic β-state and its σ-decomposition is given by:

|bβ;N〉 ≡ 1√
(N − 1)!

b†β(b†c)
N−1|0〉 =

√
N − 1

N + 1
|σ = N − 2〉+

√
2

N + 1
|σ = N〉

(B.0.1)

Here b†c, b
†
β are the usual GNSB operators with β = −1 and γ = 0 (see Section

1.2.2).

The method by which Equation (B.0.1) is proved, is by applying the

Casimir P †0P0 = [−ĈO(6) +N(N + 4)], where P †0 = d† · d†− (s†)2, to the state

|bβ;N〉. First, it is clear that this state can contain only irreps of 〈N〉 and

〈N − 2〉, since (b†c)
(N−1) has a good 〈σ = N − 1〉 label ,and bβ has a good

〈σ = 1〉 label. Thus it can be written as |bβ;N〉 = a0|σ = N〉+a2|σ = N−2〉.
Applying P †0P0 to this vector, the vector that belongs to the 〈σ = N〉 is
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nullified, and we are left with the second vector:

P †0P0|bβ;N〉 = [−σ(σ + 4) +N(N + 4)]a2|σ = N − 2〉 = 4(1 +N)a2|σ = N − 2〉

The norm of this expression is

|| |bβ;N〉 ||2 = 16(1 +N)2a2
2 (B.0.2)

On the other hand, this result can be calculated directly with the help of the

commutation relations. First we note that (b†c = s† − d†0, b
†
β = s† + d†0):

P †0 = d† · d† − (s†)2 = 2[−b†cb
†
β + d†2d

†
−2 − d

†
1d
†
−1] (B.0.3)

and applying the Casimir we have

P †0P0
1√

(N − 1)!
b†β(b†c)

N−1|0〉 =

P †0 [−2bβbc]
1√

(N − 1)!
b†β(b†c)

N−1|0〉 =

− 2P †0

√
N − 1√

(N − 2)!
(b†c)

N−2|0〉 =

− 4[−b†cb
†
β + d†2d

†
−2 − d

†
1d
†
−1]

√
N − 1√

(N − 2)!
(b†c)

N−2|0〉

(B.0.4)

Taking the norm of (B.0.4), we use the commutation relations [dµ, d
†
µ] = 1

and the fact that the bosons bβ, bc, dµ(µ = −2,−1, 1, 2) are orthogonal and

that d†µdµ functions as number operators (as well as b†cbc and b†βbβ). We then

have:

||P †0P0
1√

(N − 1)!
b†β(b†c)

N−1|0〉||2 =

16{(1 + (N − 2)) · 1 + 1 + 1}(N − 1) = 16(N − 1)(N + 1)

(B.0.5)

Comparing (B.0.2) with (B.0.5), we find a2 =

√
N − 1

N + 1
. a0 is then found to
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be a0 =
√

1− a2
2 =

√
2

N + 1
The intrinsic γ-state that corresponds with the condensate | −1, 0;N〉 is

orthogonal to the β-band. As such it can be written as (see Eq. B.0.1):

|bγ;N〉 ≡
1√

(N − 1)!
b†γ(b

†
c)
N−1|0〉

= α
(√ 2

N + 1
|σ = N − 2〉 −

√
N − 1

N + 1
|σ = N〉

)
+ |ν〉

(B.0.6)

where |ν〉 is orthogonal to the two other states. In addition, the d†µ have a

good 〈σ = 1〉 label. It follows that |ν〉 = 0 and

|bγ;N〉 =

√
2

N + 1
|σ = N − 2〉 −

√
N − 1

N + 1
|σ = N〉 (B.0.7)



Appendix C

Matrix Elements of the

Collective Hamiltonian

C.1 Calculation of the Collective Matrix Terms

This section contains the “sandwiching” of the operators that compose the

collective Hamiltonian between the L-projected intrinsic states. Using these

calculations, the mij matrix mij = 〈βi;N,L|Hcol|βj;N,L〉 of Chapter 6 can

be evaluated.

In the U(5) basis, the condensate states can be written as [32]:

|β;N,L〉 =
∑

τ≤nd≤N,τ,n∆

1

2
[1 + (−1)nd−τ ]ξ(N,L)

nd,τ,n∆
|N, nd, τ, n∆, L〉 (C.1.1)

and

ξ(N,L)
nd,τ,n∆

= [Γ
(L)
N (β)]−1/2f (L)

τ,n∆

βnd

[(N − nd)!(nd − τ)!!(nd + τ + 3)!!]1/2

where Γ
(L)
N (β) is the normalization factor: [Γ

(L)
N (β)] ∝ ||PL|N, β〉||2. First the

expression 〈βi;N,L|(s†)nsn|βj;N,L〉 will be calculated, then the other terms

will be calculated using it.
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Calculating s|β;N,L〉

We note that:

ξ(N,L)
nd,τ,n∆

√
N − nd = [Γ

(L)
N (β)]−1/2f (L)

τ,n∆

βnd

[(N − nd − 1)!(nd − τ)!!(nd + τ + 3)!!]1/2

=
( Γ

(L)
N (β)

Γ
(L)
N−1(β)

)−1/2

ξ(N−1,L)
nd,τ,n∆

(C.1.2)

so that:

s|β;N,L〉 =
∑

τ≤nd≤N,τ,n∆

1

2
[1 + (−1)nd−τ ]ξ(N,L)

nd,τ,n∆
s|N, nd, τ, n∆, L〉

=
∑

τ≤nd≤N−1,τ,n∆

1

2
[1 + (−1)nd−τ ]ξ(N,L)

nd,τ,n∆

√
N − nd|N − 1, nd, τ, n∆, L〉

=
( Γ

(L)
N (β)

Γ
(L)
N−1(β)

)−1/2 ∑
τ≤nd≤N−1,τ,n∆

1

2
[1 + (−1)nd−τ ]ξ(N−1,L)

nd,τ,n∆
|N − 1, nd, τ, n∆, L〉

=
( Γ

(L)
N (β)

Γ
(L)
N−1(β)

)−1/2

|β;N − 1, L〉

(C.1.3)

or more generally:

sn|β;N,L〉 =
( Γ

(L)
N (β)

Γ
(L)
N−n(β)

)−1/2

|β;N − n, L〉 (C.1.4)

Calculating 〈β1;N,L|β2;N,L〉

The dependence on β, beside the total normalization, is only in the βnd term.

In addition we note that Γ depends only on its argument squared, so that

Γ(−β1/2) = Γ(β1/2) (the value of Γ is given in Eq. (6.5), page 52). Using the



APPENDIX C. COLLECTIVE HAMILTONIAN MATRIX 75

above, we have

r12 = 〈β1;N,L|β2;N,L〉 =

[Γ
(L)
N (β1)Γ

(L)
N (β2)]−1/2

∑
τ,nd,n∆

(β1β2)nd(f
(L)
τ.n∆)2

(N − nd)!(nd − τ)!!(nd + τ + 3)!!

=[Γ
(L)
N (β1)Γ

(L)
N (β2)]−1/2 Γ

(L)
N (
√
β1β2)

Γ
(L)
N (
√
β1β2)

∑
τ,nd,n∆

[(
√
β1β2)ndf

(L)
τ,n∆ ]2

(N − nd)!(nd−τ )!!(nd + τ + 3)!!

=
[Γ

(L)
N (β1)Γ

(L)
N (β2)]−1/2

Γ
(L)
N (
√
β1β2)−1

=
Γ

(L)
N (
√
β1β2)

[Γ
(L)
N (β1)Γ

(L)
N (β2)]1/2

(C.1.5)

Calculating 〈β1;N,L|(s†)n(s†)nβ2;N,L〉

Using Eqs. (C.1.4)-(C.1.5) we have

〈β1;N,L|(s†)nsnβ2;N,L〉 =
( Γ

(L)
N (β1)

Γ
(L)
N−n(β1)

)−1/2( Γ
(L)
N (β2)

Γ
(L)
N−n(β2)

)−1/2 [Γ
(L)
N−n(β1)Γ

(L)
N−n(β2)]−1/2

Γ
(L)
N−n(

√
β1β2)−1

⇒ S
(N)
n,L (β1, β2) ≡ 〈β1;N,L|(s†)nsn|β2;N,L〉 =

Γ
(L)
N−n(

√
β1β2)

[Γ
(L)
N (β1) Γ

(L)
N (β2)]1/2

(C.1.6)

Note that S
(N)
0,L = 〈β1;N,L|β2;N,L〉 = r12

Calculating “sandwiching” of various operators between

the intrinsic states

Below we use the following notations to make it more readable. All terms

are L-dependent, but since the Hamiltonian is O(3) scalar, different L’s do

not mix:

ΓN(β) ≡ Γ
(L)
N (β)

ΓN(β1, β2) ≡ ΓN(β1)ΓN(β2)

SNn (β1, β2) ≡ S
(N)
n,L (β1, β2)

(C.1.7)



APPENDIX C. COLLECTIVE HAMILTONIAN MATRIX 76

Calculating 〈β1;N,L|n̂d|β2;N,L〉

〈β1;N,L|nd|β2;N,L〉 ≡ D
(N)
1,L (β1, β2) = NSN0 (β1, β2)− SN1 (β1, β2) (C.1.8)

Calculating 〈β1;N,L|n̂d(n̂d − 1)|β2;N,L〉

We have:

n̂d(n̂d − 1) = (N − n̂s)(N − n̂s − 1) = N(N − 1) + 2(1−N)n̂s + n̂s(n̂s − 1)

so that

〈β1;N,L|n̂d(n̂d − 1)|β2;N,L〉 ≡ D
(N)
2,L (β1, β2)

= N(N − 1)SN0 (β1, β2)− 2(N − 1)SN1 (β1, β2) + SN2 (β1, β2)

(C.1.9)

Calculating 〈β1;N,L|ĈO(3)|β2;N,L〉

〈β1;N,L|ĈO(3)|β2;N,L〉 = SN0 L(L+ 1) (C.1.10)

Calculating 〈β1;N,L|n̂2
d|β2;N,L〉

We note that:

n̂2
d = (N − n̂s)2 = N2 − 2Nn̂s + n̂2

s

and since (s†)2s2 = (n̂s − 1)n̂s we get:

n̂2
d = N2 − (2N + 1)n̂s + s†s†ss

so that

〈β1;N,L|n̂2
d|β2;N,L〉 = N2SN0 (β1, β2)− (2N + 1)SN1 (β1, β2) + SN2 (β1, β2)

(C.1.11)
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(or using the above results: n̂2
d = n̂d(n̂d−1)+n̂d we have: 〈β1;N,L|n̂2

d|β2;N,L〉 =

D
(N)
2,L (β1, β2) +D

(N)
1,L (β1, β2) )

Calculating 〈β1;N,L|ĈO(5)|β2;N,L〉

First we note that we can write [24]:

−ĈO(5) + n̂d(n̂d + 3) = (d† · d†)(d̃ · d̃)

n̂d, n̂
2
d are already known. We need to calculate (d† · d†)(d̃ · d̃). This is done

by noting that the condensate |β, 0;N〉 is annihilated by P0 = d · d − β2s2.

In addition because P0 is O(3) scalar, it does not mix different L irreps, so

that P0|β;N,L〉 = 0. Using this we have

(d̃ · d̃)|β2;N,L〉 = (P0 + β2
2s

2)|β2;N,L〉 = β2
2 s

2|β2;N,L〉

so that

〈β1;N,L|(d† · d†)(d̃ · d̃)|β2;N,L〉 = (β1β2)2 SN2 (β1, β2)

and

〈β1;N,L|ĈO(5)|β2;N,L〉 =

4DN
1 (β1, β2) +DN

2 (β1, β2)− (β1β2)2 SN2 (β1, β2)
(C.1.12)

Calculating 〈β1;N,L|ĈO(6)|β2;N,L〉

We note that [24]:

−ĈO(6) +N(N + 4) = [(s†)2 + d† · d†][h.c.]
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and using the same method as before:

(s2 + d̃ · d̃)|β2;N,L〉 = (s2 + P0 + β2
2s

2)|β2;N,L〉

= (1 + β2
2)s2|β2;N,L〉

and we have:

〈β1;N,L| ĈO(6) |β2;N,L〉 = N(N + 4)SN0 (β1, β2)− (1 + β2
1)(1 + β2

2)SN2 (β1, β2)

(C.1.13)

Calculating 〈β1;N,L|n̂dĈO(5)|β2;N,L〉

We have n̂dĈO(5) = (N−n̂s)ĈO(5). The first part is immediate, for the second

we note that [s, ĈO(5)] = 0 so that:

n̂sĈO(5) = s†sĈO(5) = s†ĈO(5)s

and using Eq. (C.1.4) and Eq. (C.1.12) we get

〈β1;N,L| n̂sĈO(5) |β2;N,L〉 =( ΓN(β2)

ΓN−1(β2)

ΓN(β1)

ΓN−1(β1)

)−1/2

×

(4DN−1
1 (β1, β2) +DN−1

2 (β1, β2)− (β1β2)2 SN−1
2 (β1, β2))

(C.1.14)

The above results can be now combined into mij of Eq. (6.4).
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C.2 Calculating the Transition Probability Be-

tween L-Projected States

The reduced transition probability between the L-projected states of two

states with given K: |αK〉 and |α′K ′〉 [22] is:

B(E2;αKL→ α′K ′L′) =

|Σµ(LK 2µ|L′K + µ)
∫
dτd

(L′)∗
K′K+µ(θ)〈α′, K ′|R(θ)T

(2)
µ |αK〉|2

〈α′K ′|
∫
dτd

(L′)∗
K′K′(θ)R(θ)|α′K ′〉〈αK|

∫
dτd

(L)∗
KK (θ)R(θ)|αK〉

Here dτ = d(cos θ) with the integration limits θ ∈ [0, π] and T (2) = d†s +

s†d̃+χ(d†d̃)(2) (eb = 1). This expression will be calculated using |αK = 0〉 ≡
|β2〉 = (s† + β2d

†
0)N |0〉 and |α′K ′ = 0〉 ≡ |β1〉 = (s† + β1d

†
0)N |0〉. Beginning

with the numerator, the first term to be calculated is d†is+s
†d̃i. Note that s†d̃i

is zero unless i = 0. The other half of this expression is (Einstein summation

applies and d
(2)
ij ≡ d

(2)
ij (θ)):

〈0|(β1d0 + s)N R(θ)d†is (β2d
†
0 + s†)N |0〉 =

N〈0|(β1d0 + s)Nd
(2)
ji d

†
j(β2d

(2)
k0 d

†
k + s†)N−1|0〉 =

(applying s to the right

and rotating)

N2d
(2)
ji β1δj0〈0|(β1d0 + s)N−1(β2d

(2)
k0 d

†
k + s†)N−1|0〉 = (applying d†j to the left)

N2d
(2)
0i β1〈0|(β1d0 + s)N−1(β2d

(2)
k0 d

†
k + s†)N−1|0〉

(C.2.1)

Using the relation:

[B,A†] = λ, B|0〉 = 0, 〈0|A† = 0, 〈0|0〉 = 1

⇒ 〈0|BN(A†)N |0〉 = N !λN
(C.2.2)

and

[β1d0 + s, β2d
(2)(θ)k0d

†
k + s†] = 1 + β1β2d

(2)(θ)k0δk0 = 1 + β1β2d
(2)
00 (C.2.3)
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we have

N2d
(2)
0i (θ)β1〈0|(β1d0 + s)N−1(β2d

(2)
k0 (θ)d†k + s†)N−1|0〉 =

NN !d
(2)
0i (θ)β1(1 + β1β2d

(2)
00 )N−1

(C.2.4)

Similarly for s†d0 we have

〈0|(β1d0 + s)NR(θ)s†d0(β2d
†
0 + s†)N |0〉 = (applying ← s†, d0 →)

N2β2〈0|(β1d0 + s)N−1(β2d
(2)
k0 (θ)d†k + s†)N−1|0〉 =

NN !β2(1 + β1β2d
(2)
00 )N−1

(C.2.5)

For the full expression involving d†is+ s†d we have:∫
dτd

(L′)∗
0i (θ)〈K ′|R(θ)d†is+ s†di|K〉 =

NN !

∫
dτd

(L′)∗
0i (θ)[β1d

(2)
0i (θ) + δi0β2](1 + β1β2d

(2)
00 )N−1

(C.2.6)

The other term (d†d̃)
(2)
i can be calculated in a similar manner (remember

that (d†d̃)
(2)
i = ΣM ′,M(2M 2M ′|2i)(−1)M

′
d†Md−M ′):

〈0|(β1d0 + s)NR(θ)(d†d̃)
(2)
i (β2d

†
0 + s†)N |0〉 =∑

M ′,M

(2M 2M ′|2i)(−1)M
′〈0|(β1d0 + s)NR(θ)d†Md−M ′(β2d

†
0 + s†)N |0〉 =

(2i 20|2i)〈0|(β1d0 + s)NR(θ)d†id0(β2d
†
0 + s†)N |0〉 =

Nβ2(2i 20|2i)〈0|(β1d0 + s)NR(θ)d†i (β2d
†
0 + s†)N |0〉 =

N2β2(2i 20|2i)d(2)(θ)0iβ1〈0|(β1d0 + s)N−1(β2d
(2)
k0 (θ)d†k + s†)N−1|0〉

(C.2.7)

Using the above result, we have :∫
dτd

(L′)∗
0i (θ)〈β1|R(θ)(d†d̃)

(2)
i |β2〉 =

Nβ2β1(2 i 2 0|2 i)N !

∫
dτd

(L′)∗
0i (θ)d

(2)
0i (θ)(1 + β1β2d

(2)
00 )N−1

(C.2.8)
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The denominator is calculated as :∫
dτd

(L)∗
00 〈0|(s+ βd0)NR(θ)(s† + βd†0)N |0〉 =∫

dτd
(L)∗
00 〈0|(s+ βd0)N(s† + βd

(2)
i0 (θ)d†i )

N |0〉 =

N !

∫
dτd

(L)∗
00 (θ)(1 + β2d

(2)
00 (θ))N

(C.2.9)

Summing everything we have

B(E2; β2L→ β1L
′) =

N2|Σµ(L0 2µ|L′µ)
∫
dτd

(L′)∗
0µ [β1d

(2)
0µ + δµ0β2 + χβ2β1(2µ 2 0|2µ)d

(2)
0µ ](1 + β1β2d

(2)
00 )N−1|2( ∫

dτd
(L′)∗
00 (1 + β2

1d
(2)
00 )N

)( ∫
dτd

(L)∗
00 (1 + β2

2d
(2)
00 )N

)
d

(L)
M ′M = 〈LM ′|e−iθLy |LM〉

(C.2.10)

and the same calculation is used to calculate the reduced matrix terms:

(2L+ 1)−1/2〈β1L
′||T (λ)||β2L〉 =

N
(

Σµ(L0 2µ|L′µ)
∫
dτd

(L′)∗
0µ [β1d

(2)
0µ + δµ0β2 + χβ2β1(2µ 20|2µ)d

(2)
0µ ](1 + β1β2d

(2)
00 )N−1

)
( ∫

dτd
(L′)∗
00 (1 + β2

1d
(2)
00 )N

)1/2( ∫
dτd

(L)∗
00 (1 + β2

2d
(2)
00 )N

)1/2

d
(L)
MM ′ ≡ d

(L)
MM ′(θ)

(C.2.11)


