The Lognormal-Like Statistics of a Stochastic Squeeze Process

Dekel Shapira

Ben Gurion University (Israel)

GEFENOL 2017

[1] D. Shapira and D. Cohen (arXiv:1701.01381)

Dekel Shapira (Ben Gurion University (Israel)) The Lognormal-Like Statistics of a Stochastic Squ

The model

A 2-parameter model, described by the Langevin equation (Stratonovich interpretation):

$$\dot{x} = wx - \Omega(t)y$$

$$\dot{y} = -wy + \Omega(t)x$$

$$\langle \Omega(t)\Omega(t') \rangle = 2D\delta(t - t')$$

w generates a squeeze: $x = x_0 e^{wt}$, $y = y_0 e^{-wt}$ log $(r) \sim wt$ $\Omega(t)$ generates rotations log $(r) \sim \text{const.}$

Dekel Shapira (Ben Gurion University (Israel)) The Lognormal-Like Statistics of a Stochastic Squ

Drift and Diffusion for the radial coordinates

In polar coordinates \mathbf{r}, φ :

$$\dot{\varphi} = -w \sin(2\varphi) + \Omega(t) \dot{r} = [w \cos(2\varphi)] r$$

 $\ln (r)$ performs Brownian motion:

$$\frac{d}{dt}\ln(r(t)) = w\cos(2\varphi)$$

After transient time $\ln(r)$ drifts and diffuses:

$$\mu \equiv \langle \ln(r) \rangle = w_r t \quad \text{[Drift]}$$

$$\sigma^2 \equiv \text{Var} \left[\ln(r) \right] = 2D_r t \quad \text{[Diffusion]}$$

Previous results for $\mathbf{w_r}$ and $\mathbf{D_r}$

For large D, assume that the phase is ergodized over a time scale $\tau \sim 1/D$.

$$\frac{d}{dt}\ln(r(t)) = w\cos(2\varphi)$$

 $\ln(r)$ is a sum of t/τ uncorrelated terms $(w\tau) \cos(\varphi)$. Each term has a zero mean, and variance $\sim (w\tau)^2$:

$$w_r \sim 0$$
 $D_r \sim (w\tau)^2 \frac{1}{\tau} \sim \frac{w}{D}$

A more precise approach[2]:

$$w_r/w \sim \frac{w}{4D}$$
 $D_r/w \sim \frac{w}{8D}$

This agrees with the numerical results for $w/D \ll 1$.

Dekel Shapira (Ben Gurion University (Israel)) The Lognormal-Like Statistics of a Stochastic Squ

--- Previous result
--- Practical approximation
--- Ist approximation

GEFENOL 2017 5 / 5