Research Topics
Our recent studies concern the dynamics of particles in ringshaped geometries. In particular we consider circuits: (a) with classical particles that perform stochastic motion; (b) with quantum Bose particles whose dynamics is coherent.
Recent research activity:
Our recent studies consider minimal quantum models (a) with classical particles that perform random walk in disordered environment; (b) with quantum Bose particles whose dynamics is coherent. Four PhD students were involved in those projects during the last 3 years. In the first category we can bring as an example our study of relaxation of currents in one dimensional rings, taking into account percolation and localization properties of the model [SciReports 2016], where we fuse together themes that came from the works of SinaiDerrida and HatanoNelson. Lately we have extended the study to active networks with topological stochastic disorder [PRE 2018]. In the second category we highlight our quantumchaos theory for superfludity of onedimensional bosonic gas in a ring lattice [SciReports 2015, PRB 2017], for which we also addressed the feasibility of SQUID operation [NJP 2016] and InsulatorSuperfluid resonances [Editor's Suggestion PRA 2017]. Recently we have made a paradigm shift, introducing the concept of adiabatic passage through chaos [PRL 2018], with application to nonlinear STIRAP. On the one hand we are interested in stability issues, e.g. our recent work shows how Monodromy and Chaos combine to explain the stability of a condensates in optical lattices [PRA 2019]; while on the other hand we have interest in thermalization [NJP 2015], introducing a semiclassical theory for manybody dynamical localization in extremely small systems [PRE 2018]. A full list of publications (by subject) is appended below.
Past research activity (1):
A major theme in our studies during 20062015 was a "resistor network" theory for the energy absorption of weakly chaotic systems. The theory was mainly applied to discuss the heating of cold atoms in vibrating traps; and to the conductance of closed mesoscopic rings. This work was a natural extension for the 19982002 quest for anomalies in the quantum response of driven mesoscopic systems.
Past research activity (2):
The scope of the 20032006 publications was to place
quantum pumping in open systems and quantum stirring in closed systems
under the umbrella of linear response theory.
Later works (2008, 2013) have illuminated the physical picture using a
heuristic "splitting ratio" approach, and provided results for the counting statistics.
Past research activity (3):
The main themes of the 19972004 studies were related to models of quantum dissipation,
addressing the effect of noisy disorder, the induced dephasing, and the destruction of localization. This was a natural
extension my PhD thesis (19871993) regarding the quantum kicked rotor in the presence
of noise and dissipation.
