Galvanometer
 Submitted by: Oren Rosenblatt

Exercise 8484

A galvanometer at temperature T has a mass m, a deflection spring with oscillation frequency ω_{0} and a damping resistance R. The position x of the spring measures the current I via the equation

$$
\ddot{x}+\omega_{0}^{2} x=-\gamma \dot{x}+A(t)+\alpha I
$$

where $A(t)$ is a random force, γ is the friction and α is an instrument parameter, converting the current into force.
a. Find the current condition for recording?
b. Evaluate dissipation rate for current I with frequency ω.
c. Identify R by equating b . with $I^{2} R$.
d. Rewrite a. in terms of R in the limit $\omega \sim \omega_{0}$.

Solution

a.

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=-\gamma \dot{x}+A(t)+\alpha I \tag{1}
\end{equation*}
$$

In equilibrium $\ddot{x}=\dot{x}=0$, and for the expectation value $\langle x\rangle$ the random force $A(t)$ disappears and we get

$$
\begin{equation*}
<x>=\frac{\alpha I}{\omega_{0}^{2}} \tag{2}
\end{equation*}
$$

Now we will define $\tilde{x}=x-\langle x\rangle$ and use the equipartition law

$$
\begin{equation*}
\frac{1}{2} m \omega_{0}^{2}<\tilde{x}^{2}>=\frac{1}{2} k_{b} T \tag{3}
\end{equation*}
$$

for accurate measurement will demand

$$
\begin{equation*}
<x^{2} \gg<\tilde{x}^{2}> \tag{4}
\end{equation*}
$$

by using condition (4) in equation (3) we will get the recording condition for I.

$$
\begin{equation*}
\left(\frac{\alpha I}{\omega_{0}^{2}}\right)^{2}>\left(\frac{k_{b} T}{m \omega_{0}^{2}}\right) \Rightarrow I^{2}>\frac{k_{b} T \omega_{0}^{2}}{m \alpha^{2}} \tag{5}
\end{equation*}
$$

b. The driving force is

$$
\begin{equation*}
f_{0}=m \alpha I \tag{6}
\end{equation*}
$$

and the dissipation is

$$
\begin{equation*}
\frac{d \bar{E}}{d t}=\frac{1}{2} \omega\left|f_{0}\right|^{2} \operatorname{Im}\left(\alpha_{x}(\omega)\right) \tag{7}
\end{equation*}
$$

we shall use langevin equation in fourier space

$$
\begin{equation*}
\left(-m \omega^{2}-i m \gamma \omega+m \omega_{0}^{2}\right) x_{\omega}=m A(\omega)+f(\omega) \tag{8}
\end{equation*}
$$

and again for the expection value A will fall.

$$
\begin{equation*}
<x_{\omega}>=\alpha_{x}(\omega) f(\omega) \tag{9}
\end{equation*}
$$

by using equation (8) and (9), and rearrange it we will get

$$
\begin{equation*}
\alpha_{x}(\omega)=\left(-m \omega^{2}-i m \gamma \omega+m \omega_{0}^{2}\right)^{-1}=\frac{1}{m\left(\omega_{0}^{2}-\omega^{2}-i \gamma \omega\right)} \tag{10}
\end{equation*}
$$

from (10) will get $\operatorname{Im}\left(\alpha_{x}(\omega)\right)$

$$
\begin{equation*}
\operatorname{Im}\left(\alpha_{x}(\omega)\right)=\frac{\gamma \omega / m}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \tag{11}
\end{equation*}
$$

Placing (11) in (7) will get

$$
\begin{equation*}
\frac{d \bar{E}}{d t}=\frac{1}{2} \frac{m \alpha^{2} \gamma \omega^{2} I_{0}^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \tag{12}
\end{equation*}
$$

we used the fact that the only frequency that lasts is the current frequency and that the average mean square of the current is

$$
\begin{equation*}
I=I_{0} \cos (\omega t) \Rightarrow \overline{I^{2}}=\frac{I_{0}^{2}}{2} \tag{13}
\end{equation*}
$$

c.

$$
\begin{align*}
\frac{d \bar{E}}{d t}=R \overline{I^{2}} & \Rightarrow \frac{R I_{0}^{2}}{2}=\frac{I_{0}^{2}}{2} \frac{m \alpha^{2} \gamma \omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \tag{14}\\
R & =\frac{m \alpha^{2} \gamma \omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} \tag{15}
\end{align*}
$$

d. Equation (15) in the limit $\omega \sim \omega_{0}$ becomes

$$
\begin{equation*}
R \underset{\omega \rightarrow \omega_{0}}{=} \frac{\alpha^{2} m}{\gamma} \tag{16}
\end{equation*}
$$

we get the current condition in R terms by placing (16) in (5)

$$
\begin{equation*}
I^{2}>\frac{k_{B} T \omega_{0}^{2}}{\gamma R} \tag{17}
\end{equation*}
$$

