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The problem:

Consider a Millikan-type experiment whose purpose is to measure the charge e of a particle with
mass m. The particle is located beteen plates of capacitor, where the electric field £ is in the "up”
direction, while the gravitation g is in the "down” direction. The distance between the plates is L,
and the temperature of the system is 7. Due to the poor vacuum the particle executes a Brownian
motion that is described by a Langevin equation with friction force —nv. The charge of the electron
is estimated via 6F = e£ — mg = 0. In item (1) the system is prepared with a single particle in the
middle. In item (3) assume a uniform gas of N particles. In both cases the current is integrated
during a time interval ¢, and the charge @ = [ I(¢')dt’ is inspected as "readout”.

(1) Assuming that 0F = 0, determine the time ¢4 such that for ¢ < t4 it is not likely to get charge
readout.

(2) What is the 0 F for which the condition ¢ < t4 is no longer valid. We shall regard this value,
call it 471, as the resolution of the measurement.

(3) Assuming that §F = 0, determine the power spectrum C(w) of the current I(t).

(4) Assume that the time of the measurement is ¢. What is the §F for which the condition
var(Q) < (@) is no longer valid. We shall regard this value, call it §y, as the resolution of
the measurement.

(5) Express the ratio dx/d1 as a function of N and t/t,.

Tips: In the absence of fluctuations §F = 0 is indicated by having zero readout. In item (3)
the “readout” is a current versus voltage (“IV”) measurement, and JF = 0 is indicated by zero
current. Due to the fluctuations there is some blurring which determines the resolution dy. In
order to calculate the fluctuations in item (3) define the one-particle current as the velocity (up to
a prefactor).

The solution:

(1) The Langevin equation is a stochastic force equation describing the motion of a particle executing
Brownian motion:

0= —nv+ f(t) (1)

Where 71 encompasses all drag forces acting on the particle (in this case collisions) and f(¢) is a
random force with < f(¢t) >= 0. Solving this equation for the spreading of the particle yields
<(x(0) — x(t))2> = 2Dt and, for timescales longer than decorrelation time, D is constant and given
by the Einstein relation D = % It follows, that it would be unlikely to get a charge readout for:
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(2) When e€ — mg # 0 a ”drift” term is to be added to the Langevin equation:



0=—nv+ f(t) +0F (3)

Where 6 F = e£ — mg. The average Velocity is no longer zero, and is given by < v >= ‘%F. In this

case a minimum measurment time ¢t > 6 is required to get a reading. But we would also want
this time to be shorter than the spreading time t; we found in the previous item. This leads to the

condition:
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(3) The current of a single particle is I'' = = 7v. The power spectrum can be expressed as:
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In frequency space, Eq(1) can be rewritten as:

v = (miw )2 (= 1) (®
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From which the velocity power spectrum can be easily found:
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C, in the equation above is the, ensemble averaged, power of f (which is also the correlation
function). For white noise, the Einstein relation gives us C,, = 2m~T (refered to as v in D.C.
notes). The total current is a sum over single particle currents and so the power of the total current
will be N times the power from a single particle:
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(4) The readout is the total charge @ = fo I(¢')dt'. For a significant readout we require y/var(Q) < (Q).
0F contributes to the RHS:
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and the current variance contributes to the LHS (it can be calculated assuming §F = 0):
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The condition on ¢ F is then:
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(5) The ratio % can be expressed as a function of N and t/t4:
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