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The problem:

A balance for measuring weight consists of a sensitive spring which hangs from a �xed point. The

spring constant is K. The balance is at temperature T and gravity acceleration is g in x direction.

A small mass m hangs at the end of the spring. There is an option to apply an external force F (t),
to which x is conjugate or apply an external Vector potential A(t).

(a) Find the partition function Z.

(b) Find the average 〈x(t)〉 and 〈x2(t)〉.

(c) Find the �uctuation 〈δx2〉 = 〈(x − 〈x〉)2〉, what is the minimal m which can be meaningfully

measured?

(d) Write the Langevin equation for x(t) with friction γ and a random force f(t).

(e) Assuming 〈f(t)f(0)〉 = Cδ(t), Find 〈x̃2(t)〉 and the intensity of the random force f(t) that acts
on the mass , from (b) �nd the coe�cient C.

(f) Describe the external force by a scalar potential and demonstrate FDT.

(g) Describe the external force by a vector potential and demonstrate FDT.

The solution:
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(b) By de�nition of 〈x〉

1



〈x(t)〉 = 1

Z

1

2π~

+∞�

−∞

e−
βp2

2m dp

+∞�
x

−∞

e−(
βKx2

2
−mgβx) dx

=

√
βK

2π
e−

βm2g2

2K {− 1

βK
e−(

βKx2

2
−mgβx)

+∞
|
−∞

+
mg

K

+∞�

−∞

e−(
βKx2

2
−mgβx)dx}

The �rst part of the integral goes to zero and we get

〈x〉 =
mg

k

From the virial theorem〈x∂H∂x 〉 = kBT

〈x(Kx−mg)〉 = K〈x2〉 −mg〈x〉 = K〈x2〉 −mg(mg
K
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(c) 〈δx2〉 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x2〉 =
kBT

K

The Fluctuation of the spring should be much smaller than the tension itself, Therefor

〈x〉2 � 〈δx2〉 →
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And, �nally, we get following condition: m�
√
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(d) We use Hamilton equations:

1. ∂H
∂p = p

m = ẋ

2. ∂H
∂x = Kx−mg = −ṗ = −mẍ

from the two equations, friction γ that interact with velocity and a random force A(t) we �nd a

Langevin's equation (the system is in equilibrium)

mẍ+mγẋ+Kx−mg = mf(t)

(e) By set x̃(t) = x(t) + 〈x(t)〉into the Langevin's equation that we got and using Fourier transform

functional relationships ∂n

∂tnx(t) = (iω)nX(ω) we get

(−mω2 + iωmγ +K)X̃(ω) = mf(ω) we rearrange a little to have
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The intensity of the random force A(t) that acts on the mass
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By comparing this result with (b) we can �nd C

〈x̃2(t)〉 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 =
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and �nelly
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(f) Because of the external force that couples to x the system isn't in equilibrium, namely there is

dissipation

H =
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We use Hamilton equations:

1. ∂H
∂p = p

m = ẋ

2. ∂H
∂x = Kx−mg + F = −ṗ = −mẍ

from the two equations, friction γ that interact with velocity and a random force f(t) like in (d) we

�nd a Langevin's equation

mẍ+mγẋ+Kx−mg = −F +mf(t)
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By same way as in (e) we get (mω2 − iωmγ −K)X̃(ω) = F (ω) we rearrange a little to get the

susceptibility χx that describes the linear response of x to F
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By compering with νx(ω) we show that FDT holds.
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(g) Because of the external vector potential A(t) that couples to v the system isn't in equilibrium,

namely there is dissipation
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We use Hamilton equations:

1. ∂H
∂p = p

m + A
m = ẋ

2. ∂H
∂x = Kx−mg = −ṗ = −mẍ+ Ȧ

from the two equations, friction γ that interact with velocity and a random force f(t) like in (d) we

�nd a Langevin's equation

mẍ+mγẋ+Kx−mg = Ȧ+mf(t)

By same way as in (e) we get (−mω2 − iωmγ +K)X̃(ω) = iωA(ω) we rearrange a little to get

the susceptibility χv that describes the linear response of v to A
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By compering with νv(ω) we show that FDT holds.
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