E8481: Mass on a spring

Submitted by: Michaele Epshtein

The problem:

A balance for measuring weight consists of a sensitive spring which hangs from a fixed point. The spring constant is K. The balance is at temperature T and gravity acceleration is g in x direction. A small mass m hangs at the end of the spring. There is an option to apply an external force F(t), to which x is conjugate or apply an external Vector potential A(t).

(a) Find the partition function Z.

- **(b)** Find the average $\langle x(t) \rangle$ and $\langle x^2(t) \rangle$.
- (c) Find the fluctuation $\langle \delta x^2 \rangle = \langle (x \langle x \rangle)^2 \rangle$, what is the minimal m which can be meaningfully measured?
- (d) Write the Langevin equation for x(t) with friction γ and a random force f(t).
- (e) Assuming $\langle f(t)f(0)\rangle = C\delta(t)$, Find $\langle \tilde{x}^2(t)\rangle$ and the intensity of the random force f(t) that acts on the mass, from (b) find the coefficient C.
- (f) Describe the external force by a scalar potential and demonstrate FDT.
- (g) Describe the external force by a vector potential and demonstrate FDT.

The solution:

(a) The Hamiltonian of the system is:

$$H = \frac{p^2}{2m} + \frac{1}{2}Kx^2 - mgx$$

$$Z = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} e^{-\frac{\beta p^2}{2m}} dp \int_{-\infty}^{+\infty} e^{-(\frac{\beta Kx^2}{2} - mg\beta x)} dx = \frac{1}{2\pi\hbar} \sqrt{\frac{2m\pi}{\beta}} \int_{-\infty}^{+\infty} e^{-(y^2 - \sqrt{\frac{2\beta}{K}} mgy)} dy = \{y = \sqrt{\frac{\beta K}{2}} x\}$$

$$Z = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} e^{-\frac{\beta p^2}{2m}} dp \int_{-\infty}^{+\infty} e^{-(\frac{\beta Kx^2}{2} - mg\beta x)} dx = \frac{1}{2\pi\hbar} \sqrt{\frac{2m\pi}{\beta}} \int_{-\infty}^{+\infty} e^{-(y^2 - \sqrt{\frac{2\beta}{K}} mgy)} dy = \{y = \sqrt{\frac{\beta K}{2}} x\}$$

1

$$= \frac{1}{\hbar \beta} \sqrt{\frac{m}{K\pi}} \int_{-\infty}^{+\infty} e^{-(y - \sqrt{\frac{\beta}{2K}} mg)^2} e^{\frac{\beta m^2 g^2}{2K}} dy = \frac{1}{\hbar \beta} \sqrt{\frac{m}{K}} e^{\frac{\beta m^2 g^2}{2K}}$$

(b) By definition of $\langle x \rangle$

$$\langle x(t)\rangle = \frac{1}{Z} \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} e^{-\frac{\beta p^2}{2m}} dp \int_{-\infty}^{+\infty} x e^{-(\frac{\beta Kx^2}{2} - mg\beta x)} dx$$

$$= \sqrt{\frac{\beta K}{2\pi}} e^{-\frac{\beta m^2 g^2}{2K}} \{ -\frac{1}{\beta K} e^{-(\frac{\beta K x^2}{2} - mg\beta x)} \Big|_{-\infty}^{+\infty} + \frac{mg}{K} \int_{-\infty}^{+\infty} e^{-(\frac{\beta K x^2}{2} - mg\beta x)} dx \}$$

The first part of the integral goes to zero and we get

$$\langle x \rangle = \frac{mg}{k}$$

From the virial theorem $\langle x \frac{\partial H}{\partial x} \rangle = k_B T$

$$\langle x(Kx - mg)\rangle = K\langle x^2\rangle - mg\langle x\rangle = K\langle x^2\rangle - mg(\frac{mg}{K}) = k_BT$$

$$\langle x^2 \rangle = \frac{k_B T}{K} + (\frac{mg}{K})^2$$

(c)
$$\langle \delta x^2 \rangle = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x^2 \rangle = \frac{k_B T}{K}$$

The Fluctuation of the spring should be much smaller than the tension itself, Therefor

$$\langle x \rangle^2 \gg \langle \delta x^2 \rangle \ \rightarrow \ \frac{k_B T}{K} \ll \left(\frac{mg}{k}\right)^2$$

And, finally, we get following condition: $m \gg \sqrt{\frac{Kk_BT}{g^2}}$

(d) We use Hamilton equations:

1.
$$\frac{\partial H}{\partial p} = \frac{p}{m} = \dot{x}$$

2.
$$\frac{\partial H}{\partial x} = Kx - mg = -\dot{p} = -m\ddot{x}$$

from the two equations, friction γ that interact with velocity and a random force A(t) we find a Langevin's equation (the system is in equilibrium)

$$m\ddot{x} + m\gamma\dot{x} + Kx - mg = mf(t)$$

(e) By set $\tilde{x}(t) = x(t) + \langle x(t) \rangle$ into the Langevin's equation that we got and using Fourier transform functional relationships $\frac{\partial^n}{\partial t^n} x(t) = (i\omega)^n X(\omega)$ we get

$$(-m\omega^2 + i\omega m\gamma + K)\tilde{X}(\omega) = mf(\omega)$$
 we rearrange a little to have

$$\frac{|\tilde{X}(\omega)|^2}{|f(\omega)|^2} = \frac{1}{\omega^2} \frac{|\tilde{V}(\omega)|^2}{|f(\omega)|^2} = \frac{m^2}{(m\omega^2 - k)^2 + m^2\omega^2\gamma^2}$$

The intensity of the random force A(t) that acts on the mass

$$\nu_A(\omega) = \int_{-\infty}^{+\infty} C_A(t) e^{i\omega t} dt = \int_{-\infty}^{+\infty} C\delta(t) e^{i\omega t} dt = C \text{ where } C_A(t) = \langle f(t)f(0) \rangle$$

From the following relation $\frac{\nu_x(\omega)}{\nu_A(\omega)} = \frac{|\tilde{X}(\omega)|^2}{|f(\omega)|^2} \rightarrow \nu_x(\omega) = \frac{C}{(\omega^2 - k/m)^2 + \omega^2 \gamma^2}$

$$\langle \tilde{x}(t)\tilde{x}(t+\tau)\rangle = \int_{-\infty}^{+\infty} \nu_x(\omega)e^{-i\omega\tau}d\omega \quad \rightarrow \quad \langle \tilde{x}^2(t)\rangle = \int_{-\infty}^{+\infty} \nu_x(\omega)d\omega = \frac{1}{2\pi}\int \frac{d\omega}{(\omega^2 - K/m)^2 + \gamma^2\omega^2} = \frac{m\pi C}{2\pi\gamma K}$$

By comparing this result with (b) we can find C

$$\langle \tilde{x}^2(t) \rangle = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2 = \frac{k_B T}{K}$$

$$\langle \tilde{x}^2(t) \rangle = \frac{m\pi C}{2\pi\gamma K} = \frac{k_B T}{K} \rightarrow C = \frac{2k_B T\gamma}{m}$$

and finelly

$$\nu_x(\omega) = \frac{2k_B T \gamma m}{(\omega^2 - k/m)^2 + \omega^2 \gamma^2}$$

$$\nu_v(\omega) = \frac{2k_B T \gamma m \omega^2}{(\omega^2 - k/m)^2 + \omega^2 \gamma^2}$$

(f) Because of the external force that couples to x the system isn't in equilibrium, namely there is dissipation

$$H = \frac{p^2}{2m} + \frac{1}{2}Kx^2 - mgx + F(t)x$$

We use Hamilton equations:

1.
$$\frac{\partial H}{\partial p} = \frac{p}{m} = \dot{x}$$

2.
$$\frac{\partial H}{\partial x} = Kx - mg + F = -\dot{p} = -m\ddot{x}$$

from the two equations, friction γ that interact with velocity and a random force f(t) like in (d) we find a Langevin's equation

$$m\ddot{x} + m\gamma\dot{x} + Kx - mg = -F + mf(t)$$

By same way as in (e) we get $(m\omega^2 - i\omega m\gamma - K)\tilde{X}(\omega) = F(\omega)$ we rearrange a little to get the susceptibility χ_x that describes the linear response of x to F

$$\frac{\langle \tilde{X}(\omega) \rangle}{F(\omega)} = \frac{1}{m\omega^2 - K - i\omega m\gamma} = \chi_x$$

$$Im \chi_x = \frac{m\omega\gamma}{(m\omega^2 - k)^2 + m^2\omega^2\gamma^2}$$

By compering with $\nu_x(\omega)$ we show that FDT holds.

$$\nu_x(\omega) = \frac{2k_BT}{\omega} Im \, \chi_x = \frac{2k_BTm\gamma}{(m\omega^2 - k)^2 + m^2\omega^2\gamma^2}$$

(g) Because of the external vector potential A(t) that couples to v the system isn't in equilibrium, namely there is dissipation

$$H = \frac{p^2}{2m} + \frac{1}{2}Kx^2 - mgx + \frac{p}{m}A(t)$$

We use Hamilton equations:

1.
$$\frac{\partial H}{\partial p} = \frac{p}{m} + \frac{A}{m} = \dot{x}$$

2.
$$\frac{\partial H}{\partial x} = Kx - mg = -\dot{p} = -m\ddot{x} + \dot{A}$$

from the two equations, friction γ that interact with velocity and a random force f(t) like in (d) we find a Langevin's equation

$$m\ddot{x} + m\gamma\dot{x} + Kx - mg = \dot{A} + mf(t)$$

By same way as in (e) we get $(-m\omega^2 - i\omega m\gamma + K)\tilde{X}(\omega) = i\omega A(\omega)$ we rearrange a little to get the susceptibility χ_v that describes the linear response of v to A

$$\frac{\langle \tilde{V}(\omega) \rangle}{A(\omega)} = i\omega \frac{\langle \tilde{X}(\omega) \rangle}{A(\omega)} = \frac{\omega^2}{m\omega^2 - K - i\omega m\gamma} = \chi_v$$

$$Im \chi_v = \frac{m\omega^3 \gamma}{(m\omega^2 - k)^2 + m^2\omega^2 \gamma^2}$$

By compering with $\nu_v(\omega)$ we show that FDT holds.

$$\nu_x(\omega) = \frac{2k_BT}{\omega} Im \, \chi_x = \frac{2k_BTm\gamma\omega^2}{(m\omega^2 - k)^2 + m^2\omega^2\gamma^2}$$