E8481: Mass on a spring
Submitted by: Michaele Epshtein

The problem:

A balance for measuring weight consists of a sensitive spring which hangs from a fixed point. The
spring constant is K. The balance is at temperature T and gravity acceleration is g in x direction.
A small mass m hangs at the end of the spring. There is an option to apply an external force F(t),
to which x is conjugate or apply an external Vector potential A(t).

(a) Find the partition function Z.

(b) Find the average (x(t)) and (z%(t)).

(c) Find the fluctuation (§2%) = ((x — (z))?), what is the minimal m which can be meaningfully
measured?

(d) Write the Langevin equation for z(¢) with friction v and a random force f(t).

(e) Assuming (f(t)f(0)) = C3(t), Find (Z%()) and the intensity of the random force f(t) that acts
on the mass , from (b) find the coefficient C.

(f) Describe the external force by a scalar potential and demonstrate FDT.

(g) Describe the external force by a vector potential and demonstrate FDT.

The solution:

(a) The Hamiltonian of the system is:
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(b) By definition of (z)
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The first part of the integral goes to zero and we get

From the virial theorem(x%—?) =kpgT

(2(Kz —mg)) = K (2%) — mg(z) = K (2%) — mg("2) = kpT
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The Fluctuation of the spring should be much smaller than the tension itself, Therefor
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And, finally, we get following condition: m > /& ’;gT

(d) We use Hamilton equations:

1. 0 _ p
*Op T m

=2z

2. %%:Kx—mg:—p:—mj&
from the two equations, friction v that interact with velocity and a random force A(t) we find a
Langevin’s equation (the system is in equilibrium)

md + myi + Kz —mg = mf(t)

(e) By set &(t) = x(t) + (z(t))into the Langevin’s equation that we got and using Fourier transform
functional relationships g%:c(t) = (iw)" X (w) we get

(—mw? + iwmy + K)X (w) = mf(w) we rearrange a little to have
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The intensity of the random force A(t) that acts on the mass
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By comparing this result with (b) we can find C
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and finelly
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(f) Because of the external force that couples to x the system isn’t in equilibrium, namely there is

dissipation
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We use Hamilton equations:
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from the two equations, friction v that interact with velocity and a random force f(¢) like in (d) we

find a Langevin’s equation

mi +myi + Kz —mg = —F +mf(t)



By same way as in (e) we get (mw? — iwmy — K)X(w) = F(w) we rearrange a little to get the
susceptibility x, that describes the linear response of x to F'
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By compering with v, (w) we show that FDT holds.
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(g) Because of the external vector potential A(t) that couples to v the system isn’t in equilibrium,
namely there is dissipation
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We use Hamilton equations:
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from the two equations, friction 7 that interact with velocity and a random force f(t) like in (d) we
find a Langevin’s equation

mi 4+ myi + Koz —mg = A+ mf(t)

By same way as in (e) we get (—mw? — iwmy + K)X (w) = iwA(w) we rearrange a little to get
the susceptibility x, that describes the linear response of v to A

V(w) = (Xw) w? _
Alw) " Alw)  mw? - K —iwmy v
Ty = mw3y

(mw? — k)2 + m2w242

By compering with v,(w) we show that FDT holds.
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