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The problem:

Consider the 1D motion of two beads of mass m, attached by a very flexible spring with constant k
(the length of the spring at rest is much smaller than the fluctuations caused by random forces).The
beads are immersed in viscous liquid with friction coefficients γ1, γ2 and temperature T. Disregard
the hydrodynamic interactions between the beads and the direct collisions of the beads.

(1) Write down Langevin equations for the beads. Neglect accelerations.

(2) For γ1 = γ2 ≡ γ, Define R = x1+x2
2 , r = x1 − x2 and find 〈(r(t)− r0)2〉 and 〈(R(t)−R0)

2〉
(where r0 is half the initial distance between the ”atoms” and R0 is the initial location of the
”molecule”).

(3) Solve the equations for γ1 6= γ2 and show that the same solution as in (2) is obtained by setting
γ1 = γ2 ≡ γ.

(4) Generalize the results to 3D.

The solution:

(1) The equations of motion:{
mẍ1 = −k(x1 − x2)− γ1ẋ1 + F1(t)

mẍ2 = k(x1 − x2)− γ2ẋ2 + F2(t)
(1)

Where xi is the displacement of the ith bead, and Fi(t) is the random force acting on the ith bead
at time t. The correlation of the random forces is:

〈Fi(t)Fj(t′)〉 = 2γiTδijδ(t− t′) (2)

Neglecting the acceleration term and defining fi = 1
γi
Fi, αi = k

γi
we get:{

ẋ1 = −α1(x1 − x2) + f1(t)

ẋ2 = α2(x1 − x2) + f2(t)
(3)

(2) The Langevin eqs. are coupled so we move to the coordinates of the center of mass rc.m ≡ R
and relative motion rrel ≡ r:{

R = x1+x2
2

r = x1 − x2
⇒

{
x1 = R+ 1

2r

x2 = R− 1
2r

(4)

Substituting (4) into eqs. (3) gives:

Ṙ+
1

2
ṙ = −αr + f1(t) (5)

Ṙ− 1

2
ṙ = αr + f2(t) (6)

Adding (5) and (6) gives a Langevin type eq. for the center of mass:

Ṙ =
1

2

[
f1(t) + f2(t)

]
(7)
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which is the same as the Langevin eq. for a Brownian particle.
Taking the same step as done in class, we get:

〈∆R2(t)〉 =
T

γ
· t = 2

(D
2

)
t (8)

Where D is the diffusion coefficient for Brownian particle. We see that the center of mass diffuses
half as quickly as one free bead, which makes sense, since effectively the drag is twice as big.
Now for the relative motion. Subtracting (6) from (5) we get:

ṙ = −2αr +
[
f1(t)− f2(t)

]
≡ −2αr + φ(t) (9)

To solve the differential eqn., lets make the substitution {r = ye−2αt ⇒ ṙ = ẏe−2αt − 2αye−2αt} to
get:

ẏe−2αt − 2αye−2αt = −2αye−2αt + φ(t)⇒ ẏ = φ(t)e2αt

ẏ(t) = ẏ(0) +

∫ t

0
dt′φ(t′)e2αt

′

Going back to r:

r(t) = r0e
−2α(t) +

∫ t

0
dt′φ(t′)e−2α(t−t

′) (10)

So:

〈∆r2(t)〉 = 〈(r − r0)2〉 = 〈
[
r0(e

−2αt − 1) +

∫ t

0
dt′φ(t′)e−2α(t−t

′)
]2
〉

〈∆r2(t)〉 = r20(e−2αt−1)2+2(e−2αt−1)

∫ t

0
dt′〈r0φ(t′)〉e−2α(t−t′)+

∫ t

0

∫ t

0
dt′dt′′〈φ(t′)φ(t′′)〉e−2α(2t−t′−t′′)

The initial relative displacement and the random forces on the beads at some future time t′ > 0 are
obviously uncorrelated, so the middle term vanishes. Substituting φ and α back into the eqn. we
get:

〈∆r2(t)〉 = r20(e−2αt − 1)2 +
1

γ2

∫ t

0

∫ t

0
dt′dt′′〈

[
F1(t

′)− F2(t
′)
][
F1(t

′′)− F2(t
′′)
]
〉e−2α(2t−t′−t′′)

〈∆r2(t)〉 = r20(e−2αt−1)2+
4T

γ

∫ t

0

∫ t

0
dt′dt′′δ(t′−t′′)e−2α(2t−t′−t′′) = r20(e−2αt−1)2+

4T

γ

∫ t

0
dt′e−2α(2t−2t

′)

〈∆r2(t)〉 = r20(e−2αt − 1)2 +
T

αγ
e−4αt(e4αt − 1) = r20(e

− 2kt
γ − 1)2 +

T

k
(1− e−

4kt
γ ) (11)

Looking at Eq(10) we see that it is the sum of noise-free solution that depends on r0 and a second
”random walk” stochastic component (integrating the noise over duration t). Therefore the expres-
sion for the spreading in Eq(11) is the sum of two terms: a noise-free solution that depends on r0,
and a second term which is the same as for ”random walk”, namely 2[C(0)−C(t)], where C is the
correlation function of r (formally identical to Cvv whose calculation has been worked out in the
lecture).

(3) Again the Langevin eqs. are:{
ẋ1 = −α1(x1 − x2) + f1(t)

ẋ2 = α2(x1 − x2) + f2(t)
(12)
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Or in matrix notation:

d

dt

(
x1
x2

)
= M

(
x1
x2

)
+

(
f1
f2

)
(13)

Where

M =

(
−α1 α1

α2 −α2

)
(14)

To de-couple the eqs., we must move to the basis of the modes of motion -

(
ξ1
ξ2

)
. We diagonalize

M so M = UDU−1:

D =

(
0 0
0 −(α1 + α2)

)
U =

(
1 1
1 −γ1

γ2

)
U−1 =

(
γ1

γ1+γ2
γ2

γ1+γ2
γ2

γ1+γ2
−γ2
γ1+γ2

)

The transformation matrix U takes us to the new basis:

(
x1
x2

)
= U

(
ξ1
ξ2

)
. We can see that ξ1

is the coordinate of the center of mass up to a factor, and ξ2 plays the part of the effective relative
motion.
So now eq. (13) becomes:

d

dt
U

(
ξ1
ξ2

)
= MU

(
ξ1
ξ2

)
+

(
f1
f2

)
⇒ U−1U

d

dt

(
ξ1
ξ2

)
= U−1MU

(
ξ1
ξ2

)
+ U−1

(
f1
f2

)
d

dt

(
ξ1
ξ2

)
= D

(
ξ1
ξ2

)
+ U−1

(
f1
f2

)
(15)

So with plugging α1,2 back in, we arrive at the eqs:{
ξ̇1 = 1

γ1+γ2
(F1 + F2)

ξ̇2 = −k
(

1
γ1

+ 1
γ2

)
ξ2 + 1

γ1+γ2

(γ2
γ1
F1 − F2

) (16)

Indeed we see that for γ1 = γ2 = γ we get eqs. (7) and (9) from the previous section up to a
factor of 1

2 , which can be mended with multiplying one of the eigenvectors by 2.
The solution for the center of mass is exactly the same as before (with the appropriate factor
change):

〈∆ξ21(t)〉 =
2T

γ1 + γ2
· t (17)

With the relative motion we need to be a bit more careful because of the factor in front of F1. We
can apply the same method of solution to finally get:

〈∆ξ22(t)〉 = ξ22(0)
(
e
−k
(

1
γ1

+ 1
γ2

)
t − 1

)2
+

2T

k
(γ1
γ2

+ 1
)3(1− e−2k

(
1
γ1

+ 1
γ2

)
t
)

(18)

Again we see that for γ1 = γ2 = γ we get the same results as in the previous section up to a
factor of 1

4 which can be fixed as explained before.

(4) Generalizing this result to 3D is simple enough- Since the forces in different directions are
independent of each other, we would simply get the same answer as in section (3) for each direction
separately. So:

〈∆~ξ21(t)〉 = 〈∆ξ21x(t)〉+ 〈∆ξ21y(t)〉+ 〈∆ξ21z(t)〉 =
6T

γ1 + γ2
· t (19)

〈∆~ξ22(t)〉 = ~ξ22(0)
(
e
−k
(

1
γ1

+ 1
γ2

)
t − 1

)2
+

6T

k
(γ1
γ2

+ 1
)3(1− e−2k

(
1
γ1

+ 1
γ2

)
t
)

(20)
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