Ex7010: Site occupation during a sweep process
Submitted by: David Benisty

The problem:

Consider the occupation n of a site whose binding energy ¢ can be controlled, say by changing a
gate voltage. The temperature of the environment is T" and its chemical potential is p. Consider
separately 3 cases:

(a) The occupation n can be either 0 or 1.
(b) The occupation n can be any natural number (0,1,2,3,...)
(¢) The occupation n can be any real positive number € [0, o0]

We define n as the average occupation at equilibrium. The fluctuations of on(t) = n(t) — n are
characterized by a correlation function C'(7). Assume that it has exponential relaxation with time
constant 79. Later we define (n) as the average occupation during a sweep process, where the
potential is varied with rate €.

1) Calculate 71, express it using (T, €, ).

2) Calculate Var(n), express the result using 7.

(1)
(2)
(3) Write an expression for the w = 0 intensity v of the fluctuations.
(4)

4) Write an expression for (n) during a sweep process.

The solution: Irrespective of whether you have solved (1) and (2), in item (3) express the result
using Var(n). In item (4) use the classical version of the fluctuation-dissipation relation, and express
the result using (7', 79, 1, €), where 7 had been given by your answer to item (1). Note that the time
dependence is implicit via n.

1 Average occupation at equilibrium

The energy for n patrticles is E,, = ne. The probability for n particles is:
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(b) Similarly to the previous case, but n = 0, 1,2.... The partition function:
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And the average occupation:
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2 Variance of the occupation
(a) In this case (n?) = (n) (see eq(1)):
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The variance is:
Var(n) = (n?) — (n)? =n —a% = a(l —n)
(b) The average of n?:
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(c) In this case:
* 1 0*Z
2 2
) = [ on =
And the variance is:
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3 Intensity of the fluctuations

The fluctuations of 6n(t) = n(t) —n are characterized by a correlation function C'(7) assuming that
it has exponential relaxation with time constant 7y5. Hence:

C(7) = (dn(t)on(0)) = Var(n) exp(—m) (12)
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Where the pre-factor Var(n) comes from the C(7 = 0) result.
The intensity v is :
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4 (n) during a sweep process

The conjucaeted variable to n is —e:
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From linear response we have:
(F)i = (F)x —nX (15)

where in our case the output signal (F'); here is (n);, and the input signal X is —e.
The intensity of the fluctuations:

nN=—= EVar(n) (16)

(n); during a sweep process:

(n)yy=n+éen=n+ %Var(n) (17)



