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The problem:

The discreteness of the electron charge e implies that the current is not uniform in time and is a
source of noise. Consider a vacuum tube in which electrons are emitted from the negative electrode
and flow to the positive electrode; the probability of emitting any one electron is independent of
when other electrons are emitted. Suppose that the current meter has a response time τ . If Te is the
average time between the emission of two electrons, then the average current is 〈I〉 = e/Te = e

τ η,
where η = τ/Te is the transmission probability, 0 ≤ η ≤ 1.

(a) Show that the fluctuations in I are 〈(∆I)2〉 = e2

τ2
η(1 − η). Why would you expect the fluc-

tuations to vanish at both η = 0 and η = 1? [Hint: For each τ interval ni is the number of
electrons hitting the positive electrode. Therefore, it can be equal to ni = 0 or ni = 1 which
results in an average 〈ni〉 = τ/Te; discretize time in units of τ .]

(b) Consider the meter response to be in the range 0 < |ω| < 2π/τ . Show that for η � 1 the
fluctuations in the frequency domain are 〈(∆I)2〉 = e〈I〉 . What is the condition for this noise
to dominate over the Johnson-Nyquist noise in the circuit?

(c) Show that the 3rd order commulant is 〈(I − 〈I〉)3〉 = e3

τ3
η(1− η)(1− 2η).

The solution:

(a) During the response time τ there is a probability of τ
T that the electron will hit the cathode.

The average of ni is then

〈ni〉 = 1 · τ
Te

+ 0 ·
(

1− τ

Te

)
=

τ

Te
≡ η (1)

The current is simply I = eni
τ .The average current is 〈I〉 = e

τ 〈ni〉 = e
τ η.

The fluctuations in I are:

〈(∆I)2〉 = 〈I2〉 − 〈I〉2 =
e2

τ2
〈n2i 〉 −

e2

τ2
η2 =

e2

τ2
η (1− η) (2)

where 〈nki 〉 = 〈ni〉 = η for k ∈ N.

In the case where η = 0 or η = 1, there are no fluctuations, since the average current equals
the minimum and maximum values that can be attained by I.

(b) The power spectrum C̃ (ω) is the Fourier transform of C (t), where t = t2−t1 is the correlation
time. Since the particles arrive at random times, the pulses in the current are uncorrelated.
Therefore, C (t) is of the form

C (t) = 〈∆I (t) ∆I (0)〉 = 〈(∆I2)〉δ (t) (3)
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Calculating C̃ (ω) we get,

C̃ (ω) =

∞∫
−∞

dteiωt〈(∆I2)〉δ (t) = 〈(∆I2)〉 =
e2

τ2
η (1− η) (4)

We get the fluctuations in the frequency domain from ”Wiener-Khinchin theorem”.

〈|∆Iω|2〉 = C̃ (ω)× τ =
e2

τ
η (1− η) = e 〈I〉 (1− η) (5)

where τ is the averaging time. Also we used 〈I〉 = eη/τ from previous result.
For η � 1 we finally receive

〈|∆Iω|2〉 = e 〈I〉 (6)

This is the shot noise. This noise is white since it does not depend on the frequency.

The Johnson-Nyquist noise is a thermal noise in a circuit, with power spectrum equals to
2T/R in equilibrium, where T is the temperature and R is the resistance. In non-equilibrium
conditions we might have the addition of a shot noise to the thermal noise. Decreasing the
temperature, the shot noise becomes more important. At sufficiently low temperature the
shot noise dominates the Johnson-Nyquist noise, e 〈I〉 > 2T/R, which implies the condition

e 〈I〉R > 2T (7)

(c) The 3rd order commulant is:

〈(I − 〈I〉)3〉 =
e3

τ3
(〈n3i 〉 − 3〈n2i 〉 〈ni〉+ 3 〈ni〉 〈ni〉2 − 〈ni〉3 =

e3

τ3
(
η − 3η2 + 2η3

)
(8)

〈(I − 〈I〉)3〉 =
e3

τ3
η (1− η) (1− 2η) (9)
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