Exercises in Statistical Mechanics

Based on course by Doron Cohen, has to be proofed
Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel

This exercises pool is intended for a graduate course in "statistical mechanics". Some of the problems are original, while other were assembled from various undocumented sources. In particular some problems originate from exams that were written by B. Horovitz (BGU), S. Fishman (Technion), and D. Cohen (BGU).

[Exercise 6776]

Boltzmann equation: Emission

Equilibrium and kinetics of light and matter:
(a) Consider atoms with fixed positions that can be either in their ground state a_{0}, or in an excited state a_{1}, which has a higher energy ϵ. If n_{0} and n_{1} are the densities of atoms in the the two levels, find the ratio n_{1} / n_{0} at temperature T.
(b) Consider photons γ of frequency $\omega=\epsilon / \hbar$ and momentum $|\mathbf{p}|=\hbar \omega / c$, which can interact with the atoms through the following processes:
(i) Spontaneous emission: $a_{1} \rightarrow a_{0}+\gamma$
(ii) Absorption: $a_{0}+\gamma \rightarrow a_{1}$
(iii) Stimulated emission: $a_{1}+\gamma \rightarrow a_{0}+\gamma+\gamma$.

Assume that spontaneous emission occurs with a probability σ_{1} (per unit time and per unit (momentum) ${ }^{3}$) and that absorption and stimulated emission have constant (angle independent) differential cross-sections of σ_{2} and $\sigma_{3} / 4 \pi$, respectively.
Show that the Boltzmann equation for the density $f(\mathbf{r}, p, t)$ of the photon gas, treating the atoms as fixed scatterers of densities n_{0} and n_{1} is

$$
\frac{\partial f(\mathbf{r}, p, t)}{\partial t}+\frac{\mathbf{p} c}{|\mathbf{p}|} \cdot \frac{\partial f(\mathbf{r}, p, t)}{\partial \mathbf{r}}=-\sigma_{2} n_{0} c f(\mathbf{r}, p, t)+\sigma_{3} n_{1} c f(\mathbf{r}, p, t)+\sigma_{1} n_{1}
$$

(c) Find the equilibrium solution $f_{e q}$. Equate the result, using (a), to that the expected value per state $f_{e q}=$ $\frac{1}{h^{3}} \frac{1}{e^{\hbar \omega / k_{B} T}-1}$ and deduce relations between the cross sections.
(d) Consider a situation in which light shines along the x axis on a collection of atoms whose boundary is at $x=0$ (see figure). The incoming flux is uniform and has photons of momentum $\mathbf{p}=\hbar \omega \hat{x} / c$ where \hat{x} is a unit vector in the x direction. Show that the solution has the form

$$
A e^{-x / a}+f_{e q}
$$

and find the penetration length a.

