C26 (mollified)
How Log in 20 coulomb gas

$$
H=\sum_{i=1}^{2 N} \frac{p_{i}^{2}}{2 n}-\sum_{i=j}^{2 N} \dot{q}_{i} q_{j} \ln \left|\overline{r_{i}}-\overline{r_{j}}\right|
$$

a) $\left(\sum_{i=1}^{2 N} q_{i}\right)^{2}=0<$ charge neutrality

$$
\begin{aligned}
& \begin{array}{l}
=\sum_{i \neq j=1}^{2 N} q_{i} q_{j}+\sum_{i=1}^{2 N} q_{i}^{2}=2 \sum_{i=j} q_{i} q_{j}+\sum_{\sum_{j} q_{i}{ }^{2}}^{2 N q^{2}} \\
q_{i} q_{j}=-\frac{1}{2} 2 N q^{2}=-N q^{2} \quad
\end{array} \\
& \sum_{i<j} q_{i} q_{i}=-\frac{1}{2} 2 N q^{2}=-N q^{2} \\
& z(L)=z_{u n} \prod_{i=1}^{2 N} \int_{0}^{L} d^{2} r_{i} e^{\beta \sum_{i=1} q_{i} q_{j} h\left|\bar{r}_{i} \bar{r}_{j}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& z(L)=z_{\operatorname{man}} C^{-4 N} C^{\beta q^{2} N} Z(C L)
\end{aligned}
$$

for $C=\frac{1}{L}$ we have, $A=L^{2}$

$$
z(L)=L^{4 N-\beta q^{2 N}} z(1) \sim A^{N\left(2-\frac{1}{2} \beta q^{2}\right)}
$$

b) $\left.P=\frac{-\partial F}{\partial A}\right)_{T, v}=\frac{k T N}{A}\left(\partial-\frac{1}{2} \beta q^{2}\right)$
instability when $\left(\frac{\partial P}{\partial A}\right)_{T, N}>_{0}$ ie. when $2 k T-\frac{1}{2} q^{2}<0$ or $K T<q^{2}$, at low T the charges pair into bound state. This clashes with the \int_{0}^{\sim} integral and requires a
shout distance cutoff. shout distance cutoff.
c)

$$
\begin{aligned}
& Z(1) \sim \underbrace{\left(\lambda^{-2}\right)^{2 N}}_{\text {momentum }} \cdot\left(\frac{1}{N!}\right)_{\text {Gibbs }}^{2} \rightarrow \sum(A) \sim \frac{1}{N /)^{2} \lambda^{n N}} A^{N\left(2-\frac{1}{5} \beta q^{2}\right)} \\
& F=\operatorname{LT}\left[2 N \ln \lambda^{2}+2 N \ln N-2 N-N\left(2-\frac{1}{2} \beta q^{2}\right) \ln A\right]+\operatorname{const}\left(\begin{array}{c}
\text { dovarit depend. } \\
\text { on } N)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mu=\frac{\partial F}{\partial N}=\zeta_{B} T\left[2 h \lambda^{2}+2 \ln N-\left(2-\frac{1}{2} \beta q^{2}\right) \ln A\right] \\
& e^{\beta \mu}=\lambda^{4} N^{2} A^{-2+\frac{1}{2} \beta q^{2}} \rightarrow N=\frac{1}{\lambda^{2}} A^{1-\beta q^{2}} e^{\frac{1}{2} \beta \mu}
\end{aligned}
$$

as $A \rightarrow \infty$,
for $\left.T>T_{C}=g^{2} / 4\right)$ we have $N \rightarrow \infty$ a gas of unbound particles.

$$
\text { for } T<T_{C} \quad N \rightarrow 0
$$

- Below T_{c} the system chooses to minimize the energy by allowing pairs io annihilate, leaving zero particles is the system. (ie. $\left|\bar{r}_{i}-\bar{i}\right|>0$)
When introducing the cornet cut of for non-pontline particles, we get

Low $T<T_{C}$

dipole gas

High $T>i_{c}$

plasma

