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The problem:

Consider Fermi gas of N spin 1
2 electrons at temperature T = 0, with N+ ”up” electrons and N−

”down” electrons, such that N = N+ + N−. Due to the antisymmetry of the total wave function
the energy of the system is:

U = α
N+N−
V

Where V is the volume. Note that this interaction favors parallel spin states. Define the magneti-
zation as M = N+−N−

V .

(a) Write the total energy E(M) including both the kinetic energy and the interaction, and expand
up to 4th order in M .

(b) Find the critical value αc such that for α > αc the electron gas can lower its total energy by
spontaneously developing magnetization. This is known as the Stoner instability.

(c) Explain the instability qualitatively, and sketch the behavior of the spontaneous magnetization
as a function of α.

(d) Repeat (a) at finite but low temperatures T , and find αc(T ) to second order in T .

The solution:

(a) The total energy is the sum of the kinetic and potential energy ET = EK + U . We will first
calculate the Kinetic energy using prior knowledge of fermion gas, then we will add the potential
energy. First we note that at ground level the Fermi level is completely populated and thus we can
calculate for one of the spin directions:

N± = V

∫ kF

0

d3k

(2π)3
→ kF =

(
6π2n±

)1/3
Where we have used: d3k
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= 4πk2dk, we will use this to evaluate the kinetic energy:
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So for T = 0 the kinetic energy is:
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Where we used: ε(k) = p2

2m = ~2k2
2m . We wish to evaluate n
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+ and n
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− at equilibrium: n+ = n

2 + δ,
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2 − δ so that the magnetization is M = n+ − n− = 2δ. Let us expand n
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In a similar fashion we expand n
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Where we assigned x = 2δ

n = M
n << 1, we can see that while the even orders of x have the same

sign, the odd orders are of opposite sign thus when adding we are left with the even orders:
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the potential energy is:
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The total energy is:
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(b) We can note that the coefficient of M4 is always positive, but for different values of α the
coefficient of M2 can change it’s sign. The critical value αc is defined when the coefficient equals
zero.
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We can note that this is a similar expression of the density of states of a 3D Fermi gas with a
multiplicity of 2:
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We define the Stoner criteria as α > 1
NεF .

(c) Let us denote C4 as the coefficient of M4 and C2 = αc − α as the coefficient for M2. the
derivative of the energy allows us to see the behavior of the magnetization at minimum energy:

∂E

∂M
= 2C2M + 4C4M
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α− αc

2C4
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Figure 1: Change of magnetization over a change of alpha

(d) At finite low temperatures the Fermi-Dirac population function can no longer be described as
a step function, we thus use Zommerfeld’s approximation:
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Where the small term is:
(
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)
<< 1. By implementing Zommerfeld’s approximation and using
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The complete free energy is:
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Developing to second order in M we see that: n± ≈
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now be written as:
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Where: E0(T ) is the constant energy in the system: E0(T ) = 2E0
V + αn2
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A phase transition will occur when:

αc − α+ γ(kT )2 = 0

So, we can now assign αc(T ) = αc(0) + γ(kT )2. from this expression we see that the higher the
temperature is, we will need a stronger coupling constant.
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