5955: Change of boiling point with altitude

Submitted by: Boris Shif

The problem:

Consider an atmosphere as an ideal gas whose average mass is $m_{A}=30 \mathrm{gr} / \mathrm{mole}$, atmospheric pressure at sea level $(h=0)$ equals P_{0} and is at uniform temperature of $T_{A}=27^{\circ} \mathrm{C}$.
We take liquid whose latent heat Q is $1000 \mathrm{cal} / \mathrm{mole}$ and we find that its boiling point is $95^{\circ} \mathrm{C}$ at the top of a mountain and $105^{\circ} \mathrm{C}$ at the bottom (sea level).
Asume that the gas phase of the liquid is an ideal gas with density much lower than that of the liquid.
(1) Calculate the atmospheric pressure P_{A} as a function of height h.
(2) Calculate the liquid pressure as a function of its temerature.
(3) From above deduce the height of the mountain.

The solution:

(1)

The probability to find a particle at height h is

$$
p(h) \propto e^{-\beta m g h}
$$

the number of particles at height h is

$$
N_{A}(H)=N_{A}(0) e^{-\beta m g h}
$$

The gas is an ideal gas at uniform temperature and therefore

$$
P_{A}(h)=P_{A}(0) e^{-\beta m g h}
$$

We know that F_{H} is an analitical function and $d F_{H}=-S d T-P d V$. From the analitical property of the F_{H} function

$$
\frac{d P}{d T}=\frac{\partial^{2} F_{H}}{\partial T \partial V}=\frac{\partial^{2} F_{H}}{\partial V \partial T}=\frac{d S}{d V}=\frac{T d S}{T d V} \approx \frac{Q}{T V_{\text {gas }}}=\frac{Q}{k_{b} T^{2}} P
$$

therefore

$$
\begin{aligned}
& \frac{d P}{P}=-\frac{Q}{k_{b} T^{2}} d T \\
& \Rightarrow \operatorname{Ln}\left(P\left(T_{h}\right)\right)-\operatorname{Ln}\left(P\left(T_{h=0}\right)\right)=\frac{Q}{k_{b}}\left(\frac{1}{T_{h=0}}-\frac{1}{T_{h}}\right) \Leftrightarrow P_{g}(T)=P_{g}\left(T_{h=0}\right) e^{\frac{Q}{k_{b}}\left(\frac{1}{T_{h=0}}-\frac{1}{T_{h}}\right)}
\end{aligned}
$$

We define $T_{h=0}=T_{0}$
At steady state the pressure of the atmosphere and the gas must be equal

$$
P_{g}\left(T_{h}\right)=P_{A}(h) \Leftrightarrow P_{0} e^{\frac{Q}{k_{b}}\left(\frac{1}{T_{0}}-\frac{1}{T_{h}}\right)}=P_{0} e^{-\frac{m_{g}}{k_{b} T_{A}} z} \Leftrightarrow Q\left(\frac{1}{T_{0}}-\frac{1}{T_{h}}\right)=-\frac{m_{A} g}{T_{A}} h
$$

We know that $1 \mathrm{cal} / \mathrm{mol}=4.184 \mathrm{~J} / \mathrm{mol}$ and therefore:

$$
h=-4184 *\left(\frac{1}{378}-\frac{1}{368}\right) * 300 / 0.3=300.8 m
$$

Remark:
In case of water the latent heat is $\approx 40 \mathrm{KJ} /$ mole and we get the same way that

$$
h \approx-40000 *\left(\frac{1}{378}-\frac{1}{368}\right) * 300 / 0.3=2875 m
$$

This fit with the fact that the boiling point of water decreases by $1^{0} \mathrm{C}$ for increase of 286 meters in height.

