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The problem

An airtight piston of mass M is free to move inside a cylindrical tube of cross sectional area a. The
tube is bent into a semicircular shape of radius R. On each side of the piston there is an ideal gas of
N atoms at a temperature T . The angular position of the piston is ϕ (see figure). The gravitation
field of Earth exerts a force Mg on the piston, while its effect on the gas particles can be neglected.
The partition function of the system can be written as dϕ integral over exp[-A(ϕ)]. The variable ϕ
is regarded as the ”order parameter” of the system. A small difference ∆N in the occupation of the
two sides is regarded as the conjugate field. The susceptibility is defined via the relation 〈ϕ〉≈ χ∆N .

1) Write an explicit expression for A(ϕ).

2) Find the coefficients in the expansion : A(ϕ) = (a/2)ϕ2 + (u/4)ϕ4 − hϕ.

3) Deduce what is the critical temperature Tc.

4) Using Gaussian approximation find what is χ for T>Tc.

5) Using Gaussian approximation find what is χ for T<Tc.

6) Sketch a plot of χ versus T indicating by dashed lines the Gaussian approximations and by
solid line the expected exact result. Write what is the range ∆T around Tc where the Gaussian
approximation fails.

7) What is the way to take the ”thermodynamic limit” such as to have a phase transition at
finite temperature ?

8) In reality, as the temperature is lowered, droplets condense on the walls of the left (larger)
chamber. What do you expect to find in the right chamber (gas? liquid? both?).

Guidlines: In items (4) and (5) simplify the result assuming T˜Tc and express it in terms of Tc
and T-Tc. The final answer should include one term only. Care about numerical prefactors - their
correctness indicates that the algebra is done properly. In item (7) you are requested to identify
the parameter that shouls be taken to infinity in order to get a ”phase transition”. Please specify
what are the other parameters that should be kept constant while taking this limit.

The solution

Section 1

As noted above, the patrition function can be written as an integral over ϕ:

Z =

∫ π
2

−π
2

e−A(ϕ)dϕ (1)

thus to get A(ϕ), we shall find the partition function for a constant angle Zϕ.
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For a constant ϕ the there is no interaction between the left and right side of the tube so the
contributions to Zϕ can be diveded to three:

Zϕ = Zl · e−βMgRcos(ϕ) · Zr (2)

where Zl/r are the partition functions of the gas in the tube for the left and right side respectively.

The gas in the tube is ideal so:

Zl/r =
1

Nl/r!

(
aR(π2 ± ϕ)

λ3
T

)Nl/r
(3)

we are now ready to write the expression for A(ϕ):

A(ϕ) = −ln(Zϕ) = ln(Nl!)−Nlln

(
aR(π2 + ϕ)

λ3
T

)
+ βMgRcos(ϕ) + ln(Nr!)−Nrln

(
aR(π2 − ϕ)

λ3
T

)
(4)

Section 2

We shall now find an approximation to A(ϕ) in form suggested above, to make the process as clear
as possible we will do it in three steps.

Let us first note that through out this exercise we are intersted in 〈ϕ〉, since expressions that are
constant in ϕ will factorize in the partion function we can omit them:

A(ϕ) = −Nlln

(
1 +

2ϕ

π

)
+ βMgRcos(ϕ)−Nrln

(
1− 2ϕ

π

)
(5)

In addtion, we note that it is given that at each side there are N particles but since 〈ϕ〉 ≈ χ∆N ,
we assume a small change in occupation while keeping the total number of particle const in order
to find χ:

Nl = N +
∆N

2
and Nr = N − ∆N

2
(6)

inserting back to A(ϕ) and reordering:

A(ϕ) = βMgRcos(ϕ)−Nln

[
1−

(
2ϕ

π

)2
]
−∆N

[
ln

(
1 +

2ϕ

π

)
− ln

(
1− 2ϕ

π

)]
(7)

For the last step we use the taylor expansion, it is important to note that since ∆N takes the role
of the external field it is coupled only to the linear term of ϕ thus for the right most term in eq (7)
only the first order is taken while for the others we keep up to the fourth order:

A(ϕ) ≈ 1

2

(
8N

π2
− MgR

T

)
ϕ2 +

1

4

(
MgR

6T
+

32N

π4

)
ϕ4 −

(
2∆N

π

)
ϕ (8)

Section 3

For the critical temperture we have a(Tc) = 0, so by observing eq (8):

Tc =
π2MgR

8N
(9)
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Section 4

The Gaussian approximation assume that the main contribution to intgral in eq (1) comes from the
minimum of A(ϕ) and so we shall find it. Requiring that A′(ϕ) = 0 gives:

aϕ+ uϕ3 − h = 0 (10)

for T > Tc we have a > 0 thus the only solution for:

aϕ+ uϕ3 = 0 (11)

is ϕ = 0 which implies that aϕ + uϕ3 has no local minimum/maximum, so we conclude eq (10)
has only one solution. Since A(ϕ) has only one miminum we ignore the fourth order and eq (10)
becomes:

A′(ϕ) = aϕ− h = 0 (12)

which leads to:

ϕ̄ =
h

a
(13)

Thus according to gaussain approximation:

Z =

∫ π
2

−π
2

e−A(ϕ)dϕ ≈
∫ ∞
−∞

e−
a
2

(ϕ−ϕ̄)2+h(ϕ−ϕ̄)dϕ =

√
2π

a
e
h2

2a (14)

at last we have are ready to calculate 〈ϕ〉:

〈ϕ〉 =
∂ln(Z)

∂h
=
h

a
=

2

πa
∆N (15)

Following the guidelines, we assume T ∼ Tc and approximate a by:

a ≈ 8N

π2
· T − Tc

Tc
(16)

we conclude:

χ =
2

πa
∝ 1

N
· Tc
T − Tc

(17)

Section 5

We shall follow the same steps as in section 4, except this time T < Tc and thus a < 0 so for h
small enough, eq (10) has 3 three solutions and as opposed to the previous case we cannot ignore
the fourth order.

To solve eq (10) we treat h as a small perturbation and solve only up to leading order in h (that is
the zero order) which gives minimum points in:

ϕ̄± = ±
√
|a|
u

(18)

According to the gaussian approximation each miminum contribute a gaussian integral, since this
time the partition function becomes a sum of integral it is important to keep zero orders as well:

A±(ϕ) ≈ |a|(ϕ− ϕ̄±)2 − h(ϕ− ϕ̄±)− hϕ̄± −
|a|2

4u
(19)
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so the partition function we get:

Z =

∫ π
2

−π
2

e−A(ϕ)dϕ ≈
∫ ∞
−∞

e−A−(ϕ) +

∫ ∞
−∞

e−A+(ϕ) = 2

√
π

a
e
|a|2
4u · e

h2

4|a| cosh

(
h

√
|a|
u

)
(20)

and as before 〈ϕ〉 is given by:

〈ϕ〉 =
∂ln(Z)

∂h
=

h

2a
+

√
|a|
u
tanh

(
h

√
|a|
u

)
≈
(

1

π|a|
+

2|a|
πu

)
∆N (21)

Following the guidelines, we assume T ∼ Tc and approximate u by:

u ≈ 4N

3π4
(24 + π2) (22)

we conclude:

χ ≈ π

8N
· Tc
T − Tc

+
12π

24 + π2
· T − Tc

Tc
(23)

Section 6

The condition for the gaussian approximation is that around ϕ̄/ϕ̄± the quartic term in A(ϕ) its
neglible. We are interested in the region T ∼ Tc and we have two cases to check.
Let us first examine the case T > Tc, we have ϕ̄ ≈ 0 and the condition becomes:

|a|ϕ2 >> |u|ϕ4 (24)

We interpret ”around ϕ̄” by |ϕ− ϕ̄| < σ where σ is the dispersion of ϕ.

By eq (14) σ2 =
1

a
∝ 1

n
· Tc
T − Tc

and
∣∣∣a
u

∣∣∣ ∝ T − Tc
Tc

, inserting back leads to:∣∣∣∣T − TcTc

∣∣∣∣ >> 1√
N

(25)

For the case T < Tc we have ϕ̄± ≈ ±
√∣∣∣a

u

∣∣∣, writing A(ϕ) around ϕ̄± gives:

Ah=0(ϕ̄± + ϕ) = |a|ϕ2 +
u

4
ϕ4 ±

√
|ua|ϕ3 + const (26)

so the condition becomes:

|a|ϕ2 >>
∣∣∣u
4
ϕ4 ±

√
|ua|ϕ3

∣∣∣ (27)

By inspecting eq (19) we see σ2 =
1

2|a|
∝ 1

N
·
∣∣∣∣ Tc
T − Tc

∣∣∣∣, inserting back to the condition gives the

same result as for T > Tc which leads us to conclude that the gaussian approximation fails in the
region:∣∣∣∣T − TcTc

∣∣∣∣ << 1√
N

(28)

Following the guidelines we approximate χ(T < Tc) to one term, the above discussion lead us to
assume inequality (25) thus:

χ(T < Tc) ≈
12π

24 + π2
· T − Tc

Tc
(29)
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Figure 1: Dashed lines for the gaussian approximation and solid line for the expected graph

Last we shall explain the requested graph that is presented in Figure 1, the dashed lines indicate
the result we got from the gaussian approximation.
We can see that Tc is a discontinuous point which disagree with our expectation for χ(T ) to be a
continuous function. We explain this result by provoking the previous discussion of the validity of
the gaussian approximation where we have seen that it fails around Tc. Out side the region where the
approximation fails, inequality (25), we assume that χ(T ) acts according to the result, inside that
region we drew an interpolation thus our expected result is a line that follow the approximation out
side the region and a line that connects the enpoints, we note that the slope of the line is independet
of N .

Section 7

Taking the ”Thermodynamic limit” means we take the the limit N →∞ while keeping the density

n =
N

πRa
constant. To get a phase transition at a finite temperture we have to keep Tc constant

and by eq (9):

Tc ∝
R

N
(30)
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so indeed by keep the density constant we get a finite Tc even at the limit N →∞, more specifically
we keep:

N

R
= const (31)

It is nice to see that indeed we have a phase transition at this limit by inspecting:

lim
N→∞

χ =

{
0 T > Tc

12π
24+π2 · T−TcTc

T < Tc
(32)

Section 8

Assuming the system is in equiliberium we have Tl = Tr and Pr = Pl +
Mg|sin(ϕ)|

a
, here a denots

the cross section of the tube. Remmeber that the state of coexistence of liquid and gas is a line
P (T ), assuming the state of the side with the larger volume is on the line, since Pr > Pl the state
of the side with the smaller volume must be above the line thus contains liquid only.
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