Ex5716: Ferromagnetism for Cubic Crystal

Submitted by: Tal Gur and Omer Goldberg

The Problem:

A cubic crystal which exhibits ferromagnetism at low temperature, can be described near the critical temperature T_{c} by an expansion of a Gibbs free energy

$$
\begin{equation*}
G(\mathbf{H}, T)=G_{0}+\frac{1}{2} r \mathbf{M}^{2}+u \mathbf{M}^{4}+v \sum_{i=1}^{3} M_{i}^{4}-\mathbf{H} \cdot \mathbf{M} \tag{1}
\end{equation*}
$$

where $\mathbf{H}=\left(H_{1}, H_{2}, H_{3}\right)$ is the external field and $\mathbf{M}=\left(M_{1}, M_{2}, M_{3}\right)$ is the total magnetization; $r=a(T-T c)$ and G_{0}, a, u and v are independent of \mathbf{H} and $T, a>0, u>0$. The constant v is called the cubic anisotropy and can be either positive or negative.
(a) At $\mathbf{H}=0$, find the possible solutions of \mathbf{M} which minimize G and the corresponding values of $G(0, T)$ (these solutions are characterized by the magnitude and direction of M. Show that the region of stability of G is $u+v>0$ and determine the stable equilibrium phases when $T<T_{c}$ for the cases (i) $v>0$, (ii) $-u<v<0$.
(b) Show that there is a second order phase transition at $T=T_{c}$, and determine the critical indices α, β and γ for this transition, i.e. $C_{V, H=0} \sim\left|T-T_{c}\right|^{-\alpha}$ for both $T>T_{c}$ and $T<T_{c}$, $|\mathbf{M}|_{H=0} \sim(T c-T)^{\beta}$ for $T<T_{c}$ and $\chi_{i j}=\partial M_{i} / \partial H_{j} \sim \delta_{i j}\left|T-T_{c}\right|^{-\gamma}$ for $T>T_{c}$.

The solution:

(a) For $\mathbf{H}=0$ and $\mathbf{M}=\sqrt{M_{1}^{2}+M_{2}^{2}+M_{3}^{2}}$ one can find \mathbf{M} which minimizes Gibbs free energy by applying a gradient in \mathbf{M}

$$
\begin{equation*}
\vec{\nabla}_{\mathbf{M}} G(0, T)=\sum_{i} \hat{i} \frac{\partial}{\partial M_{i}} G(0, T)=\sum_{i} \hat{i}\left(r M_{i}+4 u M_{i} \mathbf{M}^{2}+4 v M_{i}^{3}\right)=\sum_{i} \hat{i} M_{i}\left(r+4 u \mathbf{M}^{2}+4 v M_{i}^{2}\right) \tag{2}
\end{equation*}
$$

Where $i=1,2,3$ and the corresponding directions.
For stability, we demand that $G \rightarrow \infty$ as each $M_{i} \rightarrow \pm \infty$. Because each M_{i} is independent and from symmetry considerations, we can check what happens to G by taking the limit in each direction separately. It would be easier to see that for each $M_{i}, \vec{\nabla}_{M} G$ will give an increasing monotonic function* as $M_{i} \rightarrow \infty$.

$$
\begin{equation*}
\lim _{M_{i} \rightarrow \infty} \vec{\nabla}_{\mathbf{M}} G(0, T)=\lim _{M_{i} \rightarrow \infty} \sum_{i} \hat{i} M_{i}\left(r+4 u \mathbf{M}^{2}+4 v M_{i}^{2}\right) \tag{3}
\end{equation*}
$$

A polynomial function at infinity governed by the highest power of the polynomial function. therefore

$$
\begin{equation*}
\lim _{M_{i} \rightarrow \infty} \vec{\nabla}_{\mathbf{M}} G(0, T) \rightarrow \lim _{M_{i} \rightarrow \infty} 4(u+v) M_{i}^{3}>0 \tag{4}
\end{equation*}
$$

The latter requires $u+v>0$, so this is the stability region of G.

[^0]In order to find the extrema points, we may require $\vec{\nabla}_{\mathbf{M}} G(0, T)=0$, meaning each direction must equal 0 separately. We can find solutions in different cases which are distinct by the number of non-zero components of the magnetization vector.
The trivial solution is $M_{i}=0$ for every \hat{i} direction.
Next let's choose two of the magnetization components to be zero $M_{i}, M_{j}=0$ and one non-zero $M_{k} \neq 0$. This will leave us with the equation

$$
\begin{equation*}
r+4(u+v) M_{k}^{2}=0 \rightarrow M_{k}^{2}=\frac{-r}{4(u+v)} \tag{5}
\end{equation*}
$$

Where i, j, k can be any permutation of $1,2,3$.
Another option for solution is $M_{i}=0$ and $M_{j}, M_{k} \neq 0$ and we have 2 coupled equations

$$
\begin{align*}
& r+4(u+v) M_{j}^{2}+4 u M_{k}^{2}=0 \\
& r+4(u+v) M_{k}^{2}+4 u M_{j}^{2}=0 \tag{6}
\end{align*}
$$

or in matrices form

$$
-\frac{r}{4}\binom{1}{1}=\left(\begin{array}{cc}
u+v & u \tag{7}\\
u & u+v
\end{array}\right)\binom{M_{j}^{2}}{M_{k}^{2}}
$$

Leading to the solution $M_{j}^{2}=M_{k}^{2}=\frac{-r}{4(2 u+v)}$. The last option is 3 non-zero components $M_{i}, M_{j}, M_{k} \neq$ 0 leading to the matrix equation

$$
-\frac{r}{4}\left(\begin{array}{l}
1 \tag{8}\\
1 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
u+v & u & u \\
u & u+v & u \\
u & u & u+v
\end{array}\right)\left(\begin{array}{c}
M_{i}^{2} \\
M_{j}^{2} \\
M_{k}^{2}
\end{array}\right)
$$

and its solution $M_{i, j, k}^{2}=\frac{-r}{4(3 u+v)}$.
So we have the possible extrema points for $\left(M_{i}^{2}, M_{j}^{2}, M_{k}^{2}\right)$

$$
\begin{equation*}
(0,0,0),\left(0,0, \frac{-r}{4(u+v)}\right),\left(0, \frac{-r}{4(2 u+v)}, \frac{-r}{4(2 u+v)}\right),\left(\frac{-r}{4(3 u+v)}, \frac{-r}{4(3 u+v)}, \frac{-r}{4(3 u+v)}\right) \tag{9}
\end{equation*}
$$

in any permutation of $1,2,3$.
Since this is the solution for the quadratic components of the extrema point of the magnetization, we can see that in the case of $r>0$ the last 3 solutions for the magnetization are non-physical, leaving the trivial solution the only physical solution.

Next, we want to check the stability of the solution (if it's a minimum), so we calculate the Hessian matrix

$$
\left(\begin{array}{ccc}
r+4 u \mathbf{M}^{2}+(12 v+8 u) M_{x}^{2} & 8 u M_{x} M_{y} & 8 u M_{x} M_{z} \tag{10}\\
8 u M_{y} M_{x} & r+4 u \mathbf{M}^{2}+(12 v+8 u) M_{y}^{2} & 8 u M_{y} M_{z} \\
8 u M_{z} M_{x} & 8 u M_{z} M_{y} & r+4 u \mathbf{M}^{2}+(12 v+8 u) M_{z}^{2}
\end{array}\right)
$$

Due to the symmetry in this problem and since the solution found above is for quadratic components M_{i}^{2}, if $\left(M_{1}, M_{2}, M_{3}\right)$ is a solution then any permutation of $\left(\pm M_{1}, \pm M_{2}, \pm M_{3}\right)$ is also a solution.
We can map all the degenerate solutions of $\left(M_{i}, M_{j}, M_{k}\right)$ to the corresponding eigenvalues of the Hessian

Magnetization Vector	Eigenvalues of the Hessian
$\mathbf{M}^{(\mathbf{1})}=\left(\pm \sqrt{\frac{-r}{4(3 u+v)}}, \pm \sqrt{\frac{-r}{4(3 u+v)}}, \pm \sqrt{\frac{-r}{4(3 u+v)}}\right)$	$-2 r,-\frac{2 r v}{3 u+v},-\frac{2 r v}{3 u+v}$
$\mathbf{M}^{(\mathbf{2})}=\left(\pm \sqrt{\frac{-r}{4(2 u+v)}}, \pm \sqrt{\frac{-r}{4(2 u+v)}}, 0\right)$	$-\frac{2 r v}{2 u+v}, \frac{r v}{2 u+v},-2 r$
$\mathbf{M}^{(\mathbf{3})}=\left(\pm \sqrt{\frac{-r}{4(u+v)}}, 0,0\right)$	$\frac{r v}{u+v}, \frac{r v}{u+v},-2 r$
$\mathbf{M}^{(\mathbf{4})}=(0,0,0)$	r, r, r

As we could predict, the trivial solution $\mathbf{M}^{(4)}$ is unstable point for $r<0$. We can also say that $\mathbf{M}^{(2)}$ is always unstable since its first two eigenvalues of the Hessian must have opposite signs.

Now let us determine the stable equilibrium phases for $T<T_{c}$ (meaning $r<0$) and
(i) $v>0$

In this case the eigenvalues of the Hessian of $\mathbf{M}^{(\mathbf{1})}$ are all positive, and some of the eigenvalues of the Hessian of $\mathbf{M}^{(\mathbf{3})}$ are negative, meaning these are saddle points. In this case, the corresponding value of the Gibbs free energy at the stable points is $G(0, T)=G_{0}-\frac{9 r^{2}}{16(3 u+v)}$
(ii) $-u<v<0$

In this case the eigenvalues of the Hessian of $\mathbf{M}^{(\mathbf{3})}$ are all positive, and some of the eigenvalues of the Hessian of $\mathbf{M}^{(\mathbf{1})}$ are negative, meaning these are saddle points. In this case, the corresponding values of the Gibbs free energy at the stable points is $G(0, T)=G_{0}-\frac{3 r^{2}}{16(u+v)}$
(b)

Second order transition is defined by continuity of magnetization at stable equilibrium phase (which is the order parameter of the system) as a function of the temperature and a discontinuity in the derivative at $T=T_{c}$.
With that in mind we see that for $T>T_{c}, M=0$ and for $T<T_{c}, M \propto \sqrt{-r}=\sqrt{a\left(T_{c}-T\right)}$.
For $T \rightarrow T_{c}, \sqrt{-r} \rightarrow 0$ which gives us the continuity at T_{c} for $M(T)$, while $\frac{\partial M}{\partial T}(T) \propto \frac{1}{\sqrt{-r}}$ for $T<T_{c}$ and $\frac{\partial M}{\partial T}(T)=0$ for $T>T_{c}$ which gives us the discontinuity in the derivative at $T=T_{c}$, and as expected, a second order phase transition.

We want to find the critical indices. The index α is defined by $C_{V, H=0} \sim\left|T-T_{c}\right|^{-\alpha}$ for both $T>T_{c}$ and $T<T_{c}$.

$$
\begin{equation*}
C_{V, H=0}=-T \frac{\partial^{2} G(T, H=0)}{\partial T^{2}}=-T \frac{\partial}{\partial T}\left(\vec{\nabla}_{\mathbf{M}} G(T, H=0) \frac{\partial M}{\partial T}\right) \tag{11}
\end{equation*}
$$

For $T>T_{c}, G(T, H=0)=G_{0}$ so the heat capacity is $C_{V, H=0}=0$ and index $\alpha=0$ in that case. For $T<T_{c},|\mathbf{M}| \propto \sqrt{-r} \sim \sqrt{T_{c}-T}$ so $\frac{\partial M}{\partial T} \propto-\frac{1}{2 \sqrt{T_{c}-T}}$.

$$
\begin{equation*}
C_{V, H=0} \sim-T \frac{\partial}{\partial T}\left(M_{i}\left(r+4 u \mathbf{M}+4 v M_{i}^{2}\right) \frac{\partial M}{\partial T}\right) \tag{12}
\end{equation*}
$$

and for T around T_{c} we can take only the first order in M_{i}

$$
\begin{equation*}
C_{V, H=0} \sim-T \frac{\partial}{\partial T}\left(r M_{i}\left(-\frac{1}{2 \sqrt{T_{c}-T}}\right)\right) \sim-T \frac{\partial}{\partial T}(r) \sim T_{c} \tag{13}
\end{equation*}
$$

which means $\alpha=0$.
The index β is defined by $|\mathbf{M}|_{H=0} \sim\left(T_{c}-T\right)^{\beta}$ for $T<T_{c}$. In both cases for stable phases for $r<0$ in the previous section the magnitude of the magnetization is

$$
\begin{equation*}
|\mathbf{M}|_{H=0} \propto \sqrt{-r}=\sqrt{T_{c}-T}=\left(T_{c}-T\right)^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

meaning $\beta=\frac{1}{2}$.
The index γ is defined by $\chi_{i j}=\partial M_{i} / \partial H_{j} \sim \delta_{i j}\left|T-T_{c}\right|^{-\gamma}$ for $T>T_{c}$. In order to find the index, we need to calculate the gradient of the Gibbs free energy again for $\mathbf{H} \neq 0$ and find the magnetization that minimize it.

$$
\begin{equation*}
\vec{\nabla}_{\mathbf{M}} G(0, T)=\sum_{i} \hat{i} M_{i}\left(r+4 u \mathbf{M}^{2}+4 v M_{i}^{2}\right)-H_{i}=0 \tag{15}
\end{equation*}
$$

We get a vector equation, and for each direction

$$
\begin{equation*}
M_{i}\left(r+4 u \mathbf{M}^{2}+4 v M_{i}^{2}\right)=H_{i} \tag{16}
\end{equation*}
$$

For $T>T_{c}$ and weak magnetic field \mathbf{H} we know that $M_{i} \rightarrow 0$, so we can take the first order of M_{i}

$$
\begin{equation*}
H_{i} \approx M_{i} r \rightarrow M_{i} \approx \frac{1}{r} H_{i} \tag{17}
\end{equation*}
$$

and the susceptibility

$$
\begin{equation*}
\chi_{i j}=\partial M_{i} / \partial H_{j} \approx \frac{1}{r} \frac{\partial H_{i}}{\partial H_{j}} \sim \delta_{i j}\left(T-T_{c}\right)^{-1} \tag{18}
\end{equation*}
$$

meaning $\gamma=1$.

[^0]: * From symmetry decreasing monotonic function as each $M_{i} \rightarrow-\infty$ requires the same condition

