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The Problem:
A cubic crystal which exhibits ferromagnetism at low temperature, can be described near the critical
temperature Tc by an expansion of a Gibbs free energy

G(H, T ) = G0 +
1

2
rM2 + uM4 + v

3∑
i=1

M4
i −H ·M (1)

where H = (H1, H2, H3) is the external field and M = (M1,M2,M3) is the total magnetization;
r = a (T − Tc) and G0, a, u and v are independent of H and T, a > 0, u > 0. The constant v is
called the cubic anisotropy and can be either positive or negative.

(a) At H = 0, find the possible solutions of M which minimize G and the corresponding values of
G (0, T ) (these solutions are characterized by the magnitude and direction of M. Show that
the region of stability of G is u+ v > 0 and determine the stable equilibrium phases when
T < Tc for the cases (i) v > 0, (ii) −u < v < 0.

(b) Show that there is a second order phase transition at T = Tc, and determine the critical in-
dices α, β and γ for this transition, i.e. CV,H=0 ∼ |T − Tc|−α for both T > Tc and T < Tc,
|M|H=0 ∼ (Tc− T )β for T < Tc and χij = ∂Mi/∂Hj ∼ δij |T − Tc|−γ for T > Tc.

The solution:

(a) For H = 0 and M =
√
M2

1 +M2
2 +M2

3 one can find M which minimizes Gibbs free energy by
applying a gradient in M

~∇MG(0, T ) =
∑
i

î
∂

∂Mi
G(0, T ) =

∑
i

î(rMi+4uMiM
2+4vM3

i ) =
∑
i

îMi(r+4uM2+4vM2
i ) (2)

Where i = 1, 2, 3 and the corresponding directions.
For stability, we demand that G → ∞ as each Mi → ±∞ . Because each Mi is independent and
from symmetry considerations, we can check what happens to G by taking the limit in each direc-
tion separately. It would be easier to see that for each Mi , ~∇MG will give an increasing monotonic
function* as Mi →∞.

lim
Mi→∞

~∇MG(0, T ) = lim
Mi→∞

∑
i

îMi(r + 4uM2 + 4vM2
i ) (3)

A polynomial function at infinity governed by the highest power of the polynomial function. there-
fore

lim
Mi→∞

~∇MG(0, T )→ lim
Mi→∞

4(u+ v)M3
i > 0 (4)

The latter requires u+ v > 0, so this is the stability region of G.

* From symmetry decreasing monotonic function as each Mi → −∞ requires the same condition
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In order to find the extrema points, we may require ~∇MG(0, T ) = 0, meaning each direction must
equal 0 separately. We can find solutions in different cases which are distinct by the number of
non-zero components of the magnetization vector.
The trivial solution is Mi = 0 for every î direction.
Next let’s choose two of the magnetization components to be zero Mi,Mj = 0 and one non-zero
Mk 6= 0. This will leave us with the equation

r + 4(u+ v)M2
k = 0→M2

k =
−r

4(u+ v)
(5)

Where i, j, k can be any permutation of 1, 2, 3.
Another option for solution is Mi = 0 and Mj ,Mk 6= 0 and we have 2 coupled equations

r + 4(u+ v)M2
j + 4uM2

k = 0

r + 4(u+ v)M2
k + 4uM2

j = 0
(6)

or in matrices form

−r
4

(
1
1

)
=

(
u+ v u
u u+ v

)(
M2
j

M2
k

)
(7)

Leading to the solutionM2
j = M2

k = −r
4(2u+v) . The last option is 3 non-zero componentsMi,Mj ,Mk 6=

0 leading to the matrix equation

−r
4

1
1
1

 =

u+ v u u
u u+ v u
u u u+ v

M2
i

M2
j

M2
k

 (8)

and its solution M2
i,j,k = −r

4(3u+v) .

So we have the possible extrema points for (M2
i ,M

2
j ,M

2
k )

(0, 0, 0), (0, 0,
−r

4(u+ v)
), (0,

−r
4(2u+ v)

,
−r

4(2u+ v)
), (

−r
4(3u+ v)

,
−r

4(3u+ v)
,
−r

4(3u+ v)
) (9)

in any permutation of 1,2,3.
Since this is the solution for the quadratic components of the extrema point of the magnetization,
we can see that in the case of r > 0 the last 3 solutions for the magnetization are non-physical,
leaving the trivial solution the only physical solution.

Next, we want to check the stability of the solution (if it’s a minimum), so we calculate the Hessian
matrixr + 4uM2 + (12v + 8u)M2

x 8uMxMy 8uMxMz

8uMyMx r + 4uM2 + (12v + 8u)M2
y 8uMyMz

8uMzMx 8uMzMy r + 4uM2 + (12v + 8u)M2
z

 (10)

Due to the symmetry in this problem and since the solution found above is for quadratic components
M2
i , if (M1,M2,M3) is a solution then any permutation of (±M1,±M2,±M3) is also a solution.

We can map all the degenerate solutions of (Mi,Mj ,Mk) to the corresponding eigenvalues of the
Hessian

Magnetization Vector Eigenvalues of the Hessian

M(1) =
(
±
√

−r
4(3u+v) ,±

√
−r

4(3u+v) ,±
√

−r
4(3u+v)

)
−2r,− 2rv

3u+v ,−
2rv
3u+v

M(2) =
(
±
√

−r
4(2u+v) ,±

√
−r

4(2u+v) , 0
)

− 2rv
2u+v ,

rv
2u+v ,−2r

M(3) =
(
±
√

−r
4(u+v) , 0, 0

)
rv
u+v ,

rv
u+v ,−2r

M(4) =
(

0, 0, 0
)

r, r, r
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As we could predict, the trivial solution M(4) is unstable point for r < 0. We can also say that
M(2) is always unstable since its first two eigenvalues of the Hessian must have opposite signs.

Now let us determine the stable equilibrium phases for T < Tc (meaning r < 0) and
(i) v > 0
In this case the eigenvalues of the Hessian of M(1) are all positive, and some of the eigenvalues of
the Hessian of M(3) are negative, meaning these are saddle points. In this case, the corresponding
value of the Gibbs free energy at the stable points is G(0, T ) = G0 − 9r2

16(3u+v)

(ii) −u < v < 0
In this case the eigenvalues of the Hessian of M(3) are all positive, and some of the eigenvalues of
the Hessian of M(1) are negative, meaning these are saddle points. In this case, the corresponding
values of the Gibbs free energy at the stable points is G(0, T ) = G0 − 3r2

16(u+v)

(b)
Second order transition is defined by continuity of magnetization at stable equilibrium phase (which
is the order parameter of the system) as a function of the temperature and a discontinuity in the
derivative at T = Tc.
With that in mind we see that for T > Tc, M = 0 and for T < Tc ,M ∝

√
−r =

√
a(Tc − T ).

For T → Tc,
√
−r → 0 which gives us the continuity at Tc for M(T ), while ∂M

∂T (T ) ∝ 1√
−r for

T < Tc and ∂M
∂T (T ) = 0 for T > Tc which gives us the discontinuity in the derivative at T = Tc, and

as expected, a second order phase transition.

We want to find the critical indices. The index α is defined by CV,H=0 ∼ |T − Tc|−α for both
T > Tc and T < Tc.

CV,H=0 = −T ∂
2G(T,H = 0)

∂T 2
= −T ∂

∂T

(
~∇MG(T,H = 0)

∂M

∂T

)
(11)

For T > Tc, G(T,H = 0) = G0 so the heat capacity is CV,H=0 = 0 and index α = 0 in that case.
For T < Tc , |M| ∝

√
−r ∼

√
Tc − T so ∂M

∂T ∝ −
1

2
√
Tc−T

.

CV,H=0 ∼ −T
∂

∂T

(
Mi(r + 4uM + 4vM2

i )
∂M

∂T

)
(12)

and for T around Tc we can take only the first order in Mi

CV,H=0 ∼ −T
∂

∂T

(
rMi(−

1

2
√
Tc − T

)
)
∼ −T ∂

∂T
(r) ∼ Tc (13)

which means α = 0.
The index β is defined by |M|H=0 ∼ (Tc − T )β for T < Tc. In both cases for stable phases for r < 0
in the previous section the magnitude of the magnetization is

|M|H=0 ∝
√
−r =

√
Tc − T = (Tc − T )

1
2 (14)

meaning β = 1
2 .

The index γ is defined by χij = ∂Mi/∂Hj ∼ δij |T − Tc|−γ for T > Tc. In order to find the in-
dex, we need to calculate the gradient of the Gibbs free energy again for H 6= 0 and find the
magnetization that minimize it.

~∇MG(0, T ) =
∑
i

îMi(r + 4uM2 + 4vM2
i )−Hi = 0 (15)
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We get a vector equation, and for each direction

Mi(r + 4uM2 + 4vM2
i ) = Hi (16)

For T > Tc and weak magnetic field H we know that Mi → 0, so we can take the first order of Mi

Hi ≈Mir →Mi ≈
1

r
Hi (17)

and the susceptibility

χij = ∂Mi/∂Hj ≈
1

r

∂Hi

∂Hj
∼ δij(T − Tc)−1 (18)

meaning γ = 1.
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