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The problem:

A set of N atoms, each with p states, is arranged on a 1d chain with periodic boundary conditions.
The atom at the i-th site is in a state ni that is chosen from the set {1, 2, ..., p}.

Two neighboring atoms at sites i and j (where j = i+ 1), respectively, have an interaction energy
−J (J > 0) if they are in the same state, i.e. ni = nj , and 0 interaction otherwise.

The Hamiltonian is therefore

H = −J
∑
<ij>

δni,nj

where δni,nj is the Kronecker symbol, and the boundary conditions are nN+1 = n1. The summation
is being done only over nearest neighbours, i.e. over < ij > satisfying j = i+ 1.

(At all items consider the limit N →∞.)

(1) Derive the free energy of the system for p = 2.

(2) Derive the free energy of the system for a general p.

(3) Find the energy E at the low and high temperature limits and interpret the results.

The solution:

(1) First, we shall calculate the partition function by summing over all states:

Z =
∑
r

e−βEr =

p∑
n1=1

×
p∑

n2=1

×...×
p∑

nN=1

eβJ
∑p
i=1 δni,ni+1 =

=

p∑
n1=1

×
p∑

n2=1

×...×
p∑

nN=1

eβJδn1,n2eβJδn2,n3 ...eβJδnN ,nN+1

We shall now define the transfer matrix T , and use the Dirac notation to denote its (i,j) element:

Tij =< ni|T |nj >= eβJδni,nj

Using this definition and the boundary condition nN+1 = n1, we get

Z =

p∑
n1=1

×
p∑

n2=1

×...×
p∑

nN=1

< n1|T |n2 >< n2|T |n3 > ... < nN |T |nN+1 >

=

p∑
n1=1

< n1|TN |n1 >= trace(TN ) =

p∑
j=1

λNj
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Where the λ’s are the eigenvalues of the transfer matrix T .

In the case of p=2, we get

T =

(
eβJ 1
1 eβJ

)

And by demanding

Det

(
eβJ − λ 1

1 eβJ − λ

)
= 0

We get the eigenvalues:

λ+ = eβJ + 1
λ− = eβJ − 1

From which we can derive the free energy:

ln(Z) = ln(λN+ + λN− ) = ln(λN+ (1 +
λN−
λN+

))

In the thermodynamic limit N →∞ we get

ln(Z) = ln(λN+ ) = N lnλ+ = N ln(eβJ + 1)

Thus we get the free energy for the case p=2:

F = −NT×ln(eβJ + 1)

(2) For a general p, the problem is finding the eigenvalues of the T matrix, which has now p ∗ p
elements. Since we consider the thermodynamic limit only, it will be enough to find the largest
eigenvalue of the T matrix.

T =


eβJ 1 1 ...
1 eβJ 1 ...
1 1 eβJ ...
... ... ... ...


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In order to find the eigenvalues of the T matrix, we write down the vectorial equation

Ta = λa

where a is a column vector consisting of p components a1, a2, ..., ap.

Multiplying the column vector a by T from the left, we obtain p linear equations:

for each j, we get

(eβJ − 1)aj +

p∑
i=1

ai = λaj

Assuming that the vector a is not the trivial zero solution, there is at least one component aj NOT
equal to zero. Thus, we can conclude that there are two ways of solving the eigenvalue equation:

(a) A solution where

p∑
i=1

ai = 0

and

λ = eβJ − 1

(b) A solution where

p∑
i=1

ai 6=0

which implies that aj 6=0 for ANY j. Thus, we get

λ = eβJ − 1 +
1

aj

p∑
i=1

ai

Since λ cannot depend on our selection of j here, we deduce that for this solution all aj are equal,
and hence we get

λ = eβJ − 1 + p

Which is the LARGEST eigenvalue.

Solution (a) (λ = eβJ − 1) has a p − 1 degeneration, and solution (b) (λ = eβJ − 1 + p) has no
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degeneration - only a vector with p equal entries has this eigenvalue.

After finding the largest eigenvalue, we can find ln(Z) in the thermodynamic limit N →∞:

ln(Z) = ln((largest− eigenvalue)N ) = N× ln(eβJ − 1 + p)

And thus we obtain the free energy for a general p in the thermodynamic limit:

F = −NT× ln(eβJ − 1 + p)

(3) The energy E will be found by differentiating ln(Z) with respect to β:

E = −∂ ln(Z)
∂β = −NJ eβJ

eβJ−1+p

In the limit of low temperature (T << J), the system approaches the energy E = −NJ .

In this limit there is no external energy coming from thermal fluctuations, and thus the system
will be in equilibrium when all atoms will be in the same state. Another interpertation - at low
temperature the entropy has no effect over the free energy, and thus the minimum of the free energy
F will also be the minimum of the energy E.

In the limit of high temperature (T >> J) the system approaches the energy −N
p J .

The thermal fluctuatuions will be so strong that the system’s behavior will be totally random -
there will be no significance to the interaction energy J , each atom could be at any one of the states
with equal probability 1

p , and the number of J-interactions will correspondingly be N
p . Thus, the

energy of the system in this limit will be −N
p J .

As a general comment, it should be noted that the properties of the largest eigenvalue and of the
corresponding eigenvectors when T is a non-negative real square matrix is being described more
generally in the Perron-Frobenius theorem.

4


