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The problem:

A set of N atoms, each with p states, is arranged on a 1d chain with periodic boundary conditions.
The atom at the i-th site is in a state n; that is chosen from the set {1,2,...,p}.

Two neighboring atoms at sites i and j (where j =i + 1), respectively, have an interaction energy
—J (J > 0) if they are in the same state, i.e. n; = n;, and 0 interaction otherwise.

The Hamiltonian is therefore

H=-J> bnn,

<ij>
where 5ni,nj is the Kronecker symbol, and the boundary conditions are nyy; = ni. The summation
is being done only over nearest neighbours, i.e. over < ij > satisfying j =4 + 1.

(At all items consider the limit N — oo.)

(1) Derive the free energy of the system for p = 2.

(2) Derive the free energy of the system for a general p.
(

3) Find the energy F at the low and high temperature limits and interpret the results.

The solution:

(1) First, we shall calculate the partition function by summing over all states:
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We shall now define the transfer matrix 7', and use the Dirac notation to denote its (i,j) element:
Tij =< ni|T|n; >= PIonin;

Using this definition and the boundary condition ny11 = ny, we get
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Where the \’s are the eigenvalues of the transfer matrix 7.

In the case of p=2, we get

BJ 1
e
(1 o)

And by demanding
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We get the eigenvalues:

)\_A,_:CBJ‘F].
A =efl -1

From which we can derive the free energy:
In(Z) = In(AY + AN) = In(A¥ (1 + %))

In the thermodynamic limit N — oo we get
In(Z) = In(A\Y) = NlnA; = NIn(ef7 + 1)
Thus we get the free energy for the case p=2:
F = —NTxIn(e?7 4 1)

(2) For a general p, the problem is finding the eigenvalues of the 7" matrix, which has now p * p
elements. Since we consider the thermodynamic limit only, it will be enough to find the largest
eigenvalue of the T' matrix.
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In order to find the eigenvalues of the T" matrix, we write down the vectorial equation
Ta= la

where a is a column vector consisting of p components a1, az, ..., ap.

Multiplying the column vector a by T from the left, we obtain p linear equations:

for each j, we get

P
(e —1)a; + Zai = \a;
i=1

Assuming that the vector a is not the trivial zero solution, there is at least one component a; NOT
equal to zero. Thus, we can conclude that there are two ways of solving the eigenvalue equation:

(a) A solution where

and

(b) A solution where
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which implies that a;#0 for ANY j. Thus, we get
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Since A cannot depend on our selection of j here, we deduce that for this solution all a; are equal,
and hence we get

)\:eﬂj—1+p

Which is the LARGEST eigenvalue.

Solution (a) (A= e’/ —1) has a p — 1 degeneration, and solution (b) (A =e®/ — 1+ p) has no



degeneration - only a vector with p equal entries has this eigenvalue.

After finding the largest eigenvalue, we can find In(Z) in the thermodynamic limit N — oo:
In(Z) = In((largest — eigenvalue)™) = Nx In(eP” — 1 + p)
And thus we obtain the free energy for a general p in the thermodynamic limit:
F=_—NTxIn(e?” —1+p)
(3) The energy E will be found by differentiating In(Z) with respect to 5:
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In the limit of low temperature (7' << J), the system approaches the energy £ = —NJ.

In this limit there is no external energy coming from thermal fluctuations, and thus the system
will be in equilibrium when all atoms will be in the same state. Another interpertation - at low
temperature the entropy has no effect over the free energy, and thus the minimum of the free energy
F will also be the minimum of the energy F.

In the limit of high temperature (T" >> J) the system approaches the energy —%J .

The thermal fluctuatuions will be so strong that the system’s behavior will be totally random -
there will be no significance to the interaction energy J, each atom could be at any one of the states
with equal probability %, and the number of J-interactions will correspondingly be %. Thus, the
energy of the system in this limit will be —%J .

As a general comment, it should be noted that the properties of the largest eigenvalue and of the
corresponding eigenvectors when T is a non-negative real square matrix is being described more
generally in the Perron-Frobenius theorem.



