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Introduction:
Consider the Ising model Hamiltonian:

(1) H = −
∑
i,j

Ji,jSiSj − h
∑
k

Sk = Hint +H0

where Sk are spin variables, h is an external magnetic field and the system is said to be ferromagnetic
if all the coefficients Ji,j in the interaction term are non-negative. we want to evaluate the partition
function for a system of N spins.

(2) ZN ≡ e−βF = tr(e−βH) =
∑
i

e−βEi

where in the last expression we sum over all spin configurations

say we have n spins which are up, this reduced space of configuration has

(
N
n

)
spin configurations

instead of 2N , still the first sum is generally very complex, but the second sum only depends on the
number of up spins.

(3) − h
∑
k

Sk = −h(2n−N)

we define z ≡ e2βh, this allows us to write:

(4) fN (z) ≡ ZN = e−βNh
N∑
n=0

Znz
n

where Zn is the partition function for Hint in the subspace of n up spins, so we got that the par-
tition function is a polynomial of degree N in z. we can now state the Lee-Yang theorem for the
ferromagnetic Ising model.

Lee-Yang theorem

For the ferromagnetic Ising model of finite size, if one writes the partition function ZN as a poly-
nomial fN (z), of z ≡ e2βh where h is the magnetic field. all the roots of the polynomial fN (z) are
on the unit circle in the complex plane.

The theorem can also be stated for a lattice gas, in this case z ≡ eβµ, and instead of ferromagnetic
interactions, we have attractive interactions.

Importantly the theorem helps us to understand more about phase transitions, a phase transi-
tion occurs when there’s a discontinuity in the derivatives of the free energy or equivalently the
partition function vanishes, so if we find a zero of fN (z) in the physical axis 0 < z < 1 we know
that there’s a phase transition.
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The problem:

1. For the 1D Ising closed chain with ferromagnetic interaction Ji,j = ε > 0, take the solution
for the partition function, derived in class.

(5) ZN = fN (z) = λN1 + λN2

(6) λ1,2 ≡ eβεcosh(βh)± e−βε
√

1 + e4βεsinh2(βh)

Compute analytically the roots of ZN = fN (z), plot them on the complex plane, show that
all the roots lay on the unit circle in the complex plane and that the system exhibits a phase
transition in zero temperature.

2. For a set of N spins with ferromagnetic interaction, consider the following simple model, we
take all the spins to interact with each other, the interaction is scaled in order to ensure an
extensive thermodynamic limit.

(7) Ji,j =
ε

N
> 0, ∀ 1 ≤ i, j ≤ N

The physical interpretation for the model is the same as for using MFT or The Bragg Williams
formulation on near neighbor ferromagnetic interaction Ising model, but it can be solved
exactly. We don’t want to use approximations because we dont know how they affect the
roots on the unit circle. Write a program to find numerically the partition function and plot
the roots on the complex plane.
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The solution:

1. We want to solve: fN (z) = λN1 + λN2 = 0

(8) λN1 = −λN2 = ei(2m−1)πλN2 , m ∈ Z

(9) λ1 = e
i(2m−1)π

N λ2

This gives all the roots because we got N different solutions for 1 ≤ m ≤ N .

The next step is to multiply both sides by e−
i(2m−1)π

2N :

(10) λ1e
− i(2m−1)π

2N = λ2e
i(2m−1)π

2N

(11) cos

(
(2m− 1)π

2N

)
(λ1 − λ2) = isin

(
(2m− 1)π

2N

)
(λ1 + λ2)

We take the square of both sides:

(12) (e−4βε + sinh2(βh))cos2
(

(2m− 1)π

2N

)
= −sin2

(
(2m− 1)π

2N

)
cosh2(βh)

After rearranging:

(13) cosh2(βh) = (1− e−4βε)cos2
(

(2m− 1)π

2N

)
≤ 1

The right side is always smaller than or equal to 1, therefore this has solutions only for pure
imaginary βh, so we define eiθ ≡ z ≡ e2βh, where θ ∈ R is the angle of the unit circle in the
complex plane. Remarkably we see that alll the roots in z are on the unit circle, as stated by
the Lee-Yang theorem.
Now with the use of some trigonometric identities:

(14) cos(θ) = 2cos2
(
θ

2

)
− 1 = 2cosh2(βh)− 1 = −e−4βε + (1− e−4βε)cos

(
(2m− 1)π

N

)
And similarly:

(15) sin(θ) = ±2

√
1− (1− e−4βε)cos2

(
(2m− 1)π

2N

)√
(1− e−4βε)cos2

(
(2m− 1)π

2N

)
All of the N roots are on the unit circle and to the left of the 2 points:

(16) z = (1− 2e−4βε)± 2ie−2βε
√

(1− e−4βε)

So for any finite βε, the roots can’t reach the real axis, this confirms the well-established fact
that the 1D Ising chain is ferromagnetic only at zero temperature.

Fig.1,Fig.2 and Fig.3 below are for the same number of spins N = 60, but for different
values of βε, we can see that for larger values of βε the roots start to distribute more equally
and are getting closer to the real axis.
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Fig 1. roots of the 1D Ising chain partition function, N = 60,βε = 0.8

Fig 1. roots of the 1D Ising chain partition function, N = 60,βε = 1

Fig 1. roots of the 1D Ising chain partition function, N = 60,βε = 1.2
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2. All the spins in the system interact with each other, so the interaction term now is really
simple, it now depends only on the number of up spins n and we can write it exactly.

(17) −
∑
i,j

Ji,jSiSj = − ε

N

∑
i,j

SiSj

(18) − ε

N

∑
i,j

SiSj = − ε

N

((
n
2

)
+

(
N − n

2

)
− n(N − n)

)
= − ε

2N
((N − 2n)2−N)

The second term we already have, so now we can write the energy, for a system with n up
spins:

(19) En = − ε

2N
((2n−N)2 −N)− h(2n−N) = − ε

2N
(M2 −N)− hM

The energy can be written using the magnetization of the system M ≡
∑

i Si = 2n−N .
The exact partition function for the system is:

(20) ZN = fN (z) =
N∑
n=0

(
N
n

)
e−βEn = e−

βNh
2
−βε

2

N∑
n=0

(
N
n

)
e
βε
2N

(2n−N)2zn

This can be solved approximately by taking a Gaussian approximation:

(21)

(
N
n

)
≈ const ∗ e−

1
2N

(M2+ M4

6N2 )

(22) ZN ≈
N∑
n=0

e
1

2N
((βε−1)M2− M4

6N2 )zn

From the theory of phase transition we know that a phase transition exists for a positive
coefficient of M2, so the critical value is βc = 1

ε . there are also two simple limits one can take
to solve in exact.
In the limit of no interaction or high temperature βε, we have the simple non interacting N
spins in a magnetic field.

(23) fN (z) ∼ (1 + z)N

In this limit all the roots are at Z = −1, and there won’t be a phase transition in the
thermodynamic limit.
The second limit one can take is infinite interaction or zero temperature βε → ∞, here we
have that only two terms in the expansion are important, n = 0, N :

(24) fN (z) ∼ 1 + zN

In this limit the roots are zm = ei
2m−1
N

π, 1 ≤ m ≤ N , in the thermodynamic the roots will
be equally distributed on the unit circle, including zero and therefore we will have a phase
transition.
In Fig.4, Fig.5 and Fig.6 the plots are for the same number of spins N , but for different values
of βε around the critical value βcε = 1. The red points are for exact solution, the blue points
are for the Gaussian approximation, we can see significant deviations of the blue points from
the red ones. Remarkably again all the roots are on the unit circle, as stated by the Yang-Lee
theorem. We can see that the roots are becoming equally distributed when βε becomes larger,
and when βε becomes smaller we see that the roots approach z = −1, in agreement with the
limits we took.
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Fig 1. roots of the partition function, N = 60,βε = 0.8

Fig 1. roots of the partition function, N = 60,βε = 1

Fig 1. roots of the partition function, N = 60,βε = 1.2
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