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The problem:

A d dimensional container (d = 1, 2, 3) contains fermions of density n, temperature T = 0, mass
m and spin 1

2 , having a magnetic moment m̄. The container is placed in a magnetic field H/m̄ so

that the fermion spectra is εp = p2

2m ±H where p is the momentum. (Note that orbital effects are
neglected, possible e.g. at d=2 with the field parallel to the layer).

(a) Evaluate the chemical potential µ(H), for small H: Consider first an expansion to lowest
order in H and then evaluate dµ/dH to note the change at finite H.

(b) Beyond which Hc does the consideration in (a) fail? Find µ(H) at H > Hc and plot quali-
tatively µ(H)/µ0 as function of H/µ0 (where µ0 = µ(H = 0)) for d = 1, 2, 3, indicating the
values of µ(H)/µ0 at Hc.

(c) Of what order is the phase transition at Hc, at either d = 1, 2, 3? Does the phase transition
survive at finite T? (no need for finite T calculations – just note analytic properties of
thermodynamic functions).

(d) The container above, called A, with H 6= 0 is now attached to an identical container B (same
fermions at density n, T = 0), but with H = 0. In which direction will the fermions flow
initially? Specify your answer for d = 1, 2, 3 at relevant ranges of H.

The solution:

(a) To find µ, first we find the density of states g(ε), then the total number of particles N(µ,H),
and invert the equation:

g(ε) gets a separate contribution from each spin:

g(ε) = g+(ε) + g−(ε) = gf (ε−H) + gf (ε+H)

Where gf (ε) = V cε
d
2
−1 is standard free-particle energy density. Here c is the volume inside

the unit d-sphere times d
2

(√
2m
2π

)d/2
.

N is given by:

N =

∫
g(ε)f(ε− µ)dε

Where f at T = 0 is just a step function limiting integration up to εF = µ. So

N =

∫ µ

−∞
gf (ε−H) + gf (ε+H)dε

=
2V c

d

[
εd/2|µ+H0 + εd/2|µ−H0

]
=

2V c

d

[
(µ+H)d/2 + (µ−H)d/2

]
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This gives µ0 = µ(H = 0) =
(
Nd
4V c

)2/d
=
(
nd
4c

)2/d
.

To find µ(H) for small H we expand to second order of H and apply
(
d
dH

)
n,T

N =
2V c

d
2

[
µd/2 +

d

2

(
d

2
− 1

)
µ

d
2
−2H2 +O(H3)

]

0 =
d

2
µ

d
2
−1 dµ

dH
+
d

2

(
d

2
− 1

)(
d

2
− 2

)
µ

d
2
−3H2

Taking H → 0, dµ/dH = 0. This can also be seen from the symmetry of the system to
H → −H. We can search for µ to second order in H: µ(H) = µ0 + µ2H

2

N =
2V c

d

[
(µ0 + µ2H

2 +H)d/2 + (µ0 + µ2H
2 −H)d/2

]
Expanding in the small parameters µ2H

2 +H , µ2H
2 −H

=
2V c

d
2

[
µ
d/2
0 +

d

2
µ

d
2
−1

0 µ2H
2 +

d

2

(
d

2
− 1

)
µ

d
2
−2

0 H2 +O(H3)

]
From comparing H2 terms we get

µ2 = −µ−10

(
d

2
− 1

)
So µ is increases with H for d = 1, is constant for d = 2, and decreases for d ≥ 3. Notice that
for d = 2, µ(H) is constant for H < Hc (see (b)) with no approximations.

(b) At arbitrary H, we can no longer assume both spin states contribute: the negative energy
spin (−H) states might include more then N states with energy lower than the ground state
for positive energy spin (+H).

The critical H is therefore when the energy levels up to H in the (−H) spins are equal to N :

N =

∫ H

−∞
gf (ε−H)dε =

2V c

d

[
εd/2|2H0

]
=

2V c

d
(2H)d/2

Hc =
1

2

(
nd

2c

)2/d

=
1

2
22/d µ0

µ(H) above Hc is given by

N =

∫ µ

−∞
gf (ε−H)dε =

2V c

d

[
εd/2|µ+H0

]
=

2V c

d
(µ+H)d/2

µ(H) =

(
nd

2c

)2/d

−H = 22/d µ0 −H

Notice that µ must be continuous in Hc, as for H infinitesimally smaller than Hc the contri-
bution of gf (ε+H) to the equation is also infinitesimal (O(Hc−H)) for smooth gf (ε). In fact,
for d ≥ 3 we have gf (0) = 0 and the contribution is O

(
(Hc −H)2

)
thus giving a continuous

derivative of µ at Hc.

Let us prove this formally.
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µ is continuous at Hc:

Consider δH > 0. The density is constant and so is equal calculating at H− = Hc − δH and
H+ = Hc + δH.

n =
2c

d

[
(µ− +H−)d/2 + (µ− −H−)d/2

]
=

2c

d
(µ+ +H+)d/2

We already know µ+(Hc) = Hc so taking δH to 0 gives

(µ− +Hc)
d/2 + (µ− −Hc)

d/2 = (2Hc)
d/2

Which is solved by µ− = Hc

µ is differentiable at Hc for d ≥ 3:

Taking the equation for n for H < Hc

d

dH
n =

2c

d

d

dH

[
(µ+H)d/2 + (µ−H)d/2

]
= 0

d

dH
(µ+H)d/2 = − d

dH
(µ−H)d/2

(µ+H)d/2−1(
dµ

dH
+ 1) = −(µ−H)d/2−1(

dµ

dH
− 1)

We know in the limit H → H−c , µ→ Hc and with d ≥ 3, (µ−H)d/2−1 → 0. So

0 = lim
H→H−

c

(µ+H)d/2−1(
dµ

dH
+ 1) = (2Hc)

d/2−1 lim
H→H−

c

(
dµ

dH
+ 1)

dµ

dH
(H−c ) = −1

So dµ
dH (H−c ) = dµ

dH (H+
c ) = −1 and µ is differentiable at Hc. This also shows that for d = 1,

limH→H−
c

( dµdH − 1) = 0 to negate the ”infinite” limH→H−
c

(µ−H)d/2−1.

Using the same method, for d = 3 the second derivative is not continuous:

(µ+H)d/2−2
(
dµ

dH
+ 1

)2

+(µ+H)d/2−1
d2µ

dH2
= −(µ−H)d/2−2

(
dµ

dH
− 1

)2

−(µ−H)d/2−1
dµ

dH

lim
H→H−

c

(2Hc)
d/2−1 d

2µ

dH2
= lim

H→H−
c

−4(µ−H)d/2−2 = −∞

Graphs:
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(c) We can look at the magnetization at different values of H. For H > Hc, all spins are in one
direction and magnetization is constant M = N . Otherwise

M =

∫ µ

−∞
gf (ε+H)− gf (ε−H)dε =

2V c

d

[
(µ−H)d/2 − (µ+H)d/2

]
The susceptibility is

χ =
d

dH
M =

d

dH

2V c

d

[
(µ−H)d/2 − (µ+H)d/2

]
So χ has the same continuity properties as d

dHµ at Hc. For d = 1, 2 the phase transition is of
first order (discontinuity), and of second order for d = 3 (derivative discontinuity).
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At finite temperature, f(ε − µ) is smoothed and has a positive finite value at ε > H for all
finite H, so the transition from one dominant spin to both spins dominant is smooth. Both
”sites” always have non-zero occupation. The phase transition does not survive.

(d) Particles will initially flow from higher chemical potential to lower

For d = 3:

For all H, µ(0) > µ(H) so particles will flow from B to A

For d = 2:

If H ≤ Hc, then the chemical potentials are the same and there will be no flow. Otherwise
µ(0) > µ(H) so particles will flow from B to A.

For d = 1:

If H ≤ Hc, µ(0) < µ(H) and particles will flow from A to B. Otherwise, there exists H1 = 3µ0
where µ0 = µ(H1). For H ∈ (Hc, H1), µ(0) < µ(H) and particles will flow from A to B. For
H ∈ (H1,∞), µ(0) > µ(H) and particles will flow from B to A.
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