## Ex4554: Fermions in magnetic field, quantum phase transition

Submitted by: Itay Raveh

## The problem:

A dimensional container $(d=1,2,3)$ contains fermions of density $n$, temperature $T=0$, mass $m$ and spin $\frac{1}{2}$, having a magnetic moment $\bar{m}$. The container is placed in a magnetic field $H / \bar{m}$ so that the fermion spectra is $\epsilon_{\mathbf{p}}=\frac{\mathbf{p}^{2}}{2 m} \pm H$ where $\mathbf{p}$ is the momentum. (Note that orbital effects are neglected, possible e.g. at $\mathrm{d}=2$ with the field parallel to the layer).
(a) Evaluate the chemical potential $\mu(H)$, for small $H$ : Consider first an expansion to lowest order in $H$ and then evaluate $d \mu / d H$ to note the change at finite $H$.
(b) Beyond which $H_{c}$ does the consideration in (a) fail? Find $\mu(H)$ at $H>H_{c}$ and plot qualitatively $\mu(H) / \mu_{0}$ as function of $H / \mu_{0}$ (where $\mu_{0}=\mu(H=0)$ ) for $d=1,2,3$, indicating the values of $\mu(H) / \mu_{0}$ at $H_{c}$.
(c) Of what order is the phase transition at $H_{c}$, at either $d=1,2,3$ ? Does the phase transition survive at finite $T$ ? (no need for finite $T$ calculations - just note analytic properties of thermodynamic functions).
(d) The container above, called A, with $H \neq 0$ is now attached to an identical container B (same fermions at density $n, T=0$ ), but with $H=0$. In which direction will the fermions flow initially? Specify your answer for $d=1,2,3$ at relevant ranges of $H$.

## The solution:

(a) To find $\mu$, first we find the density of states $g(\epsilon)$, then the total number of particles $N(\mu, H)$, and invert the equation:
$g(\epsilon)$ gets a separate contribution from each spin:

$$
g(\epsilon)=g_{+}(\epsilon)+g_{-}(\epsilon)=g_{f}(\epsilon-H)+g_{f}(\epsilon+H)
$$

Where $g_{f}(\epsilon)=V c \epsilon^{\frac{d}{2}-1}$ is standard free-particle energy density. Here $c$ is the volume inside the unit $d$-sphere times $\frac{d}{2}\left(\frac{\sqrt{2 m}}{2 \pi}\right)^{d / 2}$.
$N$ is given by:

$$
N=\int g(\epsilon) f(\epsilon-\mu) d \epsilon
$$

Where $f$ at $T=0$ is just a step function limiting integration up to $\epsilon_{F}=\mu$. So

$$
\begin{aligned}
& N=\int_{-\infty}^{\mu} g_{f}(\epsilon-H)+g_{f}(\epsilon+H) d \epsilon \\
& =\frac{2 V c}{d}\left[\left.\epsilon^{d / 2}\right|_{0} ^{\mu+H}+\left.\epsilon^{d / 2}\right|_{0} ^{\mu-H}\right] \\
& =\frac{2 V c}{d}\left[(\mu+H)^{d / 2}+(\mu-H)^{d / 2}\right]
\end{aligned}
$$

This gives $\mu_{0}=\mu(H=0)=\left(\frac{N d}{4 V c}\right)^{2 / d}=\left(\frac{n d}{4 c}\right)^{2 / d}$.
To find $\mu(H)$ for small $H$ we expand to second order of $H$ and $\operatorname{apply}\left(\frac{d}{d H}\right)_{n, T}$

$$
\begin{aligned}
& N=\frac{2 V c}{d} 2\left[\mu^{d / 2}+\frac{d}{2}\left(\frac{d}{2}-1\right) \mu^{\frac{d}{2}-2} H^{2}+O\left(H^{3}\right)\right] \\
& 0=\frac{d}{2} \mu^{\frac{d}{2}-1} \frac{d \mu}{d H}+\frac{d}{2}\left(\frac{d}{2}-1\right)\left(\frac{d}{2}-2\right) \mu^{\frac{d}{2}-3} H^{2}
\end{aligned}
$$

Taking $H \rightarrow 0, d \mu / d H=0$. This can also be seen from the symmetry of the system to $H \rightarrow-H$. We can search for $\mu$ to second order in $H: \mu(H)=\mu_{0}+\mu_{2} H^{2}$

$$
N=\frac{2 V c}{d}\left[\left(\mu_{0}+\mu_{2} H^{2}+H\right)^{d / 2}+\left(\mu_{0}+\mu_{2} H^{2}-H\right)^{d / 2}\right]
$$

Expanding in the small parameters $\mu_{2} H^{2}+H, \mu_{2} H^{2}-H$

$$
=\frac{2 V c}{d} 2\left[\mu_{0}^{d / 2}+\frac{d}{2} \mu_{0}^{\frac{d}{2}-1} \mu_{2} H^{2}+\frac{d}{2}\left(\frac{d}{2}-1\right) \mu_{0}^{\frac{d}{2}-2} H^{2}+O\left(H^{3}\right)\right]
$$

From comparing $H^{2}$ terms we get

$$
\mu_{2}=-\mu_{0}^{-1}\left(\frac{d}{2}-1\right)
$$

So $\mu$ is increases with $H$ for $d=1$, is constant for $d=2$, and decreases for $d \geq 3$. Notice that for $d=2, \mu(H)$ is constant for $H<H_{c}$ (see (b)) with no approximations.
(b) At arbitrary $H$, we can no longer assume both spin states contribute: the negative energy spin $(-H)$ states might include more then N states with energy lower than the ground state for positive energy spin $(+H)$.
The critical $H$ is therefore when the energy levels up to $H$ in the $(-H)$ spins are equal to $N$ :

$$
\begin{aligned}
& N=\int_{-\infty}^{H} g_{f}(\epsilon-H) d \epsilon=\frac{2 V c}{d}\left[\left.\epsilon^{d / 2}\right|_{0} ^{2 H}\right]=\frac{2 V c}{d}(2 H)^{d / 2} \\
& H_{c}=\frac{1}{2}\left(\frac{n d}{2 c}\right)^{2 / d}=\frac{1}{2} 2^{2 / d} \mu_{0}
\end{aligned}
$$

$\mu(H)$ above $H_{c}$ is given by

$$
\begin{aligned}
& N=\int_{-\infty}^{\mu} g_{f}(\epsilon-H) d \epsilon=\frac{2 V c}{d}\left[\left.\epsilon^{d / 2}\right|_{0} ^{\mu+H}\right]=\frac{2 V c}{d}(\mu+H)^{d / 2} \\
& \mu(H)=\left(\frac{n d}{2 c}\right)^{2 / d}-H=2^{2 / d} \mu_{0}-H
\end{aligned}
$$

Notice that $\mu$ must be continuous in $H_{c}$, as for $H$ infinitesimally smaller than $H_{c}$ the contribution of $g_{f}(\epsilon+H)$ to the equation is also infinitesimal $\left(O\left(H_{c}-H\right)\right)$ for smooth $g_{f}(\epsilon)$. In fact, for $d \geq 3$ we have $g_{f}(0)=0$ and the contribution is $O\left(\left(H_{c}-H\right)^{2}\right)$ thus giving a continuous derivative of $\mu$ at $H_{c}$.

Let us prove this formally.
$\mu$ is continuous at $H_{c}$ :
Consider $\delta H>0$. The density is constant and so is equal calculating at $H^{-}=H_{c}-\delta H$ and $H^{+}=H_{c}+\delta H$.

$$
n=\frac{2 c}{d}\left[\left(\mu^{-}+H^{-}\right)^{d / 2}+\left(\mu^{-}-H^{-}\right)^{d / 2}\right]=\frac{2 c}{d}\left(\mu^{+}+H^{+}\right)^{d / 2}
$$

We already know $\mu^{+}\left(H_{c}\right)=H_{c}$ so taking $\delta H$ to 0 gives

$$
\left(\mu^{-}+H_{c}\right)^{d / 2}+\left(\mu^{-}-H_{c}\right)^{d / 2}=\left(2 H_{c}\right)^{d / 2}
$$

Which is solved by $\mu^{-}=H_{c}$
$\mu$ is differentiable at $H_{c}$ for $d \geq 3$ :
Taking the equation for $n$ for $H<H_{c}$

$$
\begin{aligned}
& \frac{d}{d H} n=\frac{2 c}{d} \frac{d}{d H}\left[(\mu+H)^{d / 2}+(\mu-H)^{d / 2}\right]=0 \\
& \frac{d}{d H}(\mu+H)^{d / 2}=-\frac{d}{d H}(\mu-H)^{d / 2} \\
& (\mu+H)^{d / 2-1}\left(\frac{d \mu}{d H}+1\right)=-(\mu-H)^{d / 2-1}\left(\frac{d \mu}{d H}-1\right)
\end{aligned}
$$

We know in the limit $H \rightarrow H_{c}^{-}, \mu \rightarrow H_{c}$ and with $d \geq 3,(\mu-H)^{d / 2-1} \rightarrow 0$. So

$$
\begin{aligned}
& 0=\lim _{H \rightarrow H_{c}^{-}}(\mu+H)^{d / 2-1}\left(\frac{d \mu}{d H}+1\right)=\left(2 H_{c}\right)^{d / 2-1} \lim _{H \rightarrow H_{c}^{-}}\left(\frac{d \mu}{d H}+1\right) \\
& \frac{d \mu}{d H}\left(H_{c}^{-}\right)=-1
\end{aligned}
$$

So $\frac{d \mu}{d H}\left(H_{c}^{-}\right)=\frac{d \mu}{d H}\left(H_{c}^{+}\right)=-1$ and $\mu$ is differentiable at $H_{c}$. This also shows that for $d=1$, $\lim _{H \rightarrow H_{c}^{-}}\left(\frac{d \mu}{d H}-1\right)=0$ to negate the "infinite" $\lim _{H \rightarrow H_{c}^{-}}(\mu-H)^{d / 2-1}$.
Using the same method, for $d=3$ the second derivative is not continuous:

$$
\begin{gathered}
(\mu+H)^{d / 2-2}\left(\frac{d \mu}{d H}+1\right)^{2}+(\mu+H)^{d / 2-1} \frac{d^{2} \mu}{d H^{2}}=-(\mu-H)^{d / 2-2}\left(\frac{d \mu}{d H}-1\right)^{2}-(\mu-H)^{d / 2-1} \frac{d \mu}{d H} \\
\lim _{H \rightarrow H_{c}^{-}}\left(2 H_{c}\right)^{d / 2-1} \frac{d^{2} \mu}{d H^{2}}=\lim _{H \rightarrow H_{c}^{-}}-4(\mu-H)^{d / 2-2}=-\infty
\end{gathered}
$$

Graphs:

(c) We can look at the magnetization at different values of $H$. For $H>H_{c}$, all spins are in one direction and magnetization is constant $M=N$. Otherwise

$$
M=\int_{-\infty}^{\mu} g_{f}(\epsilon+H)-g_{f}(\epsilon-H) d \epsilon=\frac{2 V c}{d}\left[(\mu-H)^{d / 2}-(\mu+H)^{d / 2}\right]
$$

The susceptibility is

$$
\chi=\frac{d}{d H} M=\frac{d}{d H} \frac{2 V c}{d}\left[(\mu-H)^{d / 2}-(\mu+H)^{d / 2}\right]
$$

So $\chi$ has the same continuity properties as $\frac{d}{d H} \mu$ at $H_{c}$. For $d=1,2$ the phase transition is of first order (discontinuity), and of second order for $d=3$ (derivative discontinuity).

At finite temperature, $f(\epsilon-\mu)$ is smoothed and has a positive finite value at $\epsilon>H$ for all finite $H$, so the transition from one dominant spin to both spins dominant is smooth. Both "sites" always have non-zero occupation. The phase transition does not survive.
(d) Particles will initially flow from higher chemical potential to lower

For $d=3$ :
For all $H, \mu(0)>\mu(H)$ so particles will flow from B to A
For $d=2$ :
If $H \leq H_{c}$, then the chemical potentials are the same and there will be no flow. Otherwise $\mu(0)>\mu(H)$ so particles will flow from B to A.

For $d=1$ :
If $H \leq H_{c}, \mu(0)<\mu(H)$ and particles will flow from A to B. Otherwise, there exists $H_{1}=3 \mu_{0}$ where $\mu_{0}=\mu\left(H_{1}\right)$. For $H \in\left(H_{c}, H_{1}\right), \mu(0)<\mu(H)$ and particles will flow from A to B. For $H \in\left(H_{1}, \infty\right), \mu(0)>\mu(H)$ and particles will flow from B to A.

