Ex4554: Fermions in magnetic field, quantum phase transition
Submitted by: Itay Raveh

The problem:

A d dimensional container (d = 1,2,3) contains fermions of density n, temperature 7' = 0, mass
m and spin %, having a magnetic moment m. The container is placed in a magnetic field H/m so

that the fermion spectra is ep = % + H where p is the momentum. (Note that orbital effects are
neglected, possible e.g. at d=2 with the field parallel to the layer).

(a) Evaluate the chemical potential p(H), for small H: Consider first an expansion to lowest
order in H and then evaluate du/dH to note the change at finite H.

(b) Beyond which H. does the consideration in (a) fail? Find p(H) at H > H. and plot quali-
tatively u(H)/po as function of H/ug (where pg = u(H = 0)) for d = 1,2,3, indicating the
values of pu(H)/po at He.

(c) Of what order is the phase transition at H,, at either d = 1,2,37 Does the phase transition
survive at finite 77 (no need for finite 7' calculations — just note analytic properties of
thermodynamic functions).

(d) The container above, called A, with H # 0 is now attached to an identical container B (same
fermions at density n, 7' = 0), but with H = 0. In which direction will the fermions flow
initially? Specify your answer for d = 1,2, 3 at relevant ranges of H.

The solution:

(a) To find u, first we find the density of states g(e€), then the total number of particles N(u, H),
and invert the equation:

g(€) gets a separate contribution from each spin:
g9(€) = g4(€) + g-(¢) = gp(e — H) + gs(e + H)

Where g¢(e) = Vees ! is standard free-particle energy density. Here c is the volume inside
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the unit d-sphere times 5 <7> .

N is given by:
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Where f at T = 0 is just a step function limiting integration up to ep = u. So
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This gives po = u(H =0) = (4N7Vdc)2/d _ (%)Q/d_

To find u(H) for small H we expand to second order of H and apply(%)n T

N = %2 [ud/Q + g (;l — 1) P 2H? O(H3)}

d g_ld,u d(d d d_3.:9
S ALy (LN Y (L H
0=35n dH+2<2 )(2 >“’2

Taking H — 0, du/dH = 0. This can also be seen from the symmetry of the system to
H — —H. We can search for i to second order in H: p(H) = pg + poH?
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Expanding in the small parameters puoH? + H , uoH? — H
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From comparing H? terms we get

So u is increases with H for d = 1, is constant for d = 2, and decreases for d > 3. Notice that
for d = 2, u(H) is constant for H < H. (see (b)) with no approximations.

At arbitrary H, we can no longer assume both spin states contribute: the negative energy
spin (—H) states might include more then N states with energy lower than the ground state
for positive energy spin (+H).

The critical H is therefore when the energy levels up to H in the (—H) spins are equal to N:
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Notice that p must be continuous in H,, as for H infinitesimally smaller than H,. the contri-

bution of g(e+ H) to the equation is also infinitesimal (O(H.— H)) for smooth g¢(e). In fact,

for d > 3 we have g;(0) = 0 and the contribution is O ((H. — H)?) thus giving a continuous

derivative of p at H..

Let us prove this formally.



1 is continuous at H.:

Consider dH > 0. The density is constant and so is equal calculating at H~ = H, — dH and
HY =H,.+6H.
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We already know p*(H.) = H, so taking dH to 0 gives
(= + Ho)? 4 (u™ — Ho)*? = (2H,)"?

Which is solved by =~ = H,

w is differentiable at H,. for d > 3:
Taking the equation for n for H < H,
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We know in the limit H — H_, u — H, and with d > 3, (u — H)¥?>~1 = 0. So
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So %(Hc_) = C%(Hj) = —1 and p is differentiable at H.. This also shows that for d = 1,

limHaH;(% — 1) = 0 to negate the "infinite” lim, , - (1 — H)4/2-1,

Using the same method, for d = 3 the second derivative is not continuous:
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(¢c) We can look at the magnetization at different values of H. For H > H,, all spins are in one

direction and magnetization is constant M = N. Otherwise
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The susceptibility is
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So x has the same continuity properties as d%u at H.. For d = 1,2 the phase transition is of
first order (discontinuity), and of second order for d = 3 (derivative discontinuity).



At finite temperature, f(e — u) is smoothed and has a positive finite value at € > H for all
finite H, so the transition from one dominant spin to both spins dominant is smooth. Both
7sites” always have non-zero occupation. The phase transition does not survive.

Particles will initially flow from higher chemical potential to lower

For d = 3:
For all H, ;(0) > pu(H) so particles will flow from B to A

For d = 2:

If H < H., then the chemical potentials are the same and there will be no flow. Otherwise
1(0) > u(H) so particles will flow from B to A.

For d = 1:

If H < H., 11(0) < p(H) and particles will flow from A to B. Otherwise, there exists H; = 3ug
where o = u(Hy). For H € (H., Hy), u(0) < u(H) and particles will flow from A to B. For
H e (Hy,00), u(0) > u(H) and particles will flow from B to A.



