Ex4546: Chemical equilibrium for misc reactions

Submitted by: Idan Wallerstein & Nir Kastin

The problem:

(a) The following reaction occurs inside a star

$$\gamma + \gamma \leftrightarrow e^+ + e^-$$

where γ is a photon and e^{\pm} are the positron and electron, respectively. Assume overall charge neutrality and that the system is in equilibrium at temperature T. Find an expression for the densities of e^{\pm} . (In general e^{\pm} with mass m are relativistic). Find an explicit result for these densities in the limit $k_BT \ll mc^2$. (Hint: no conservation law for photons).

(b) Repeat (a) for the reaction

 $\gamma + \gamma \leftrightarrow \pi^+ + \pi^-$

where π^{\pm} are bosons with mass m_{π} . Can these bosons become Bose-condensed if the temperature is sufficiently lowered? What are the densities at T = 0?

- (c) The photons in (b) are now eliminated from the system, but the density of the bosons is maintained. If these bosons are cooled, is there a temperature at which Bose condensation is possible? [Assume that the initial temperature satisfies $k_BT \ll m_{\pi}c^2$]. What are the densities at T = 0?
- (d) Consider initial equal densities \bar{n} for e^+ and for e^- . The e^{\pm} are allowed to equilibrate with π^{\pm} via the reaction

 $e^+ + e^- \leftrightarrow \pi^+ + \pi^-$

Write equations that determine the chemical potentials at $T \neq 0$. Consider now T = 0 and determine if Bose Einstein condensation is possible and if so what is the condition for that. Consider both $m_e > m_{\pi}$ and $m_e < m_{\pi}$ situations.

The solution:

(a) The basic equation which relates the different components in a chemical reaction is the chemical equilibrium equation which states for the desired reaction that,

$$\mu_+ + \mu_- = \mu_\gamma + \mu_\gamma \tag{1}$$

Since the photons have zero rest mass they don't have a conservation law, which means $\mu_{\gamma} = 0$, making the equation $\mu_{+} + \mu_{-} = 0$. Moreover, charge neutrality dictates that $n_{+}(\mu_{+}) = n_{-}(\mu_{-})$ and since both particles (electrons and positrons) have the same energy dispersion and spin, the function n_{+} and n_{-} will be the same with respect to their arguments, which results in having the same chemical potential $\mu_{+} = \mu_{-}$. Combining both equations we have $\mu = \mu_{-} = \mu_{+} = 0$. In the case of relativistic fermions, n as a function of μ is not analytic (not given by elementary functions). The integral expression would be

$$n_{+} = n_{-} = n = \int_{m}^{\infty} \frac{g(\varepsilon)/V}{e^{\beta(\varepsilon-\mu)} + 1} d\varepsilon = \frac{1}{\pi^{2}} \int_{m}^{\infty} \frac{\varepsilon\sqrt{\varepsilon^{2} - m^{2}}}{e^{\beta\varepsilon} + 1} d\varepsilon$$
(2)

Where $\mu = 0$ was used and the density of states was derived from the dispersion $\varepsilon = \sqrt{k^2 + m^2}$ (we use natural units $\hbar = c = 1$): We have

$$\frac{dk}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\sqrt{\varepsilon^2 - m^2} \right) = \frac{\varepsilon}{\sqrt{\varepsilon^2 - m^2}}$$

The number of states between k, k + dk is

$$\frac{g\left(\varepsilon\right)d\varepsilon}{V} = \frac{2d^{3}k}{\left(2\pi\right)^{3}} = \frac{8\pi k^{2}dk}{\left(2\pi\right)^{3}} = \frac{1}{\pi^{2}}\left(\varepsilon^{2} - m^{2}\right)\frac{dk}{d\varepsilon}d\varepsilon = \frac{1}{\pi^{2}}\left(\varepsilon^{2} - m^{2}\right)\frac{\varepsilon}{\sqrt{\varepsilon^{2} - m^{2}}}d\varepsilon = \frac{1}{\pi^{2}}\varepsilon\sqrt{\varepsilon^{2} - m^{2}}d\varepsilon$$
(3)

Where the factor 2 in the first term is for spin degeneracy.

The limit $T \ll m$ is now taken, leading to a Boltzmann approximation to the occupation function since $e^{\beta \varepsilon} \gg 1$. Thus, the integral would be:

$$n_{+} = n_{-} = n = \frac{1}{\pi^{2}} \int_{m}^{\infty} \varepsilon \sqrt{\varepsilon^{2} - m^{2}} e^{-\beta \varepsilon} d\varepsilon = T\left(\frac{m}{\pi}\right)^{2} K_{2}\left(\frac{m}{T}\right) \approx$$

$$\approx e^{-\beta m} \frac{m^{3}}{\pi^{2}} \sqrt{\frac{\pi}{2}} \left(\frac{1}{\beta m}\right)^{3/2} = 2 \frac{(2m)^{3/2}}{(2\pi)^{2}} \Gamma\left(\frac{3}{2}\right) T^{3/2} e^{-\beta m}$$

$$\tag{4}$$

Where $K_2(x)$ is the modified Bessel function of the second kind.

We can see that in the limit T = 0 the density of the electrons/positrons is 0, thus all the particles annihilate to make a photon gas.

(b) For the boson gas the integral for the number of particles with relativistic energy would be:

$$n_{+}^{>0} = n_{-}^{>0} = n^{>0} = \frac{1}{2\pi^{2}} \int \frac{\varepsilon \sqrt{\varepsilon^{2} - m^{2}}}{e^{\beta(\varepsilon - \mu)} - 1} d\varepsilon \approx \frac{1}{2\pi^{2}} \int_{m}^{\infty} \varepsilon \sqrt{\varepsilon^{2} - m^{2}} e^{-\beta\varepsilon} d\varepsilon =$$

$$= \frac{T}{2} \left(\frac{m}{\pi}\right)^{2} K_{2} \left(\frac{m}{T}\right) \approx \frac{(2m)^{3/2}}{(2\pi)^{2}} \Gamma \left(\frac{3}{2}\right) T^{3/2} e^{-\beta m}$$
(5)

Where:

- 1. Like item (a) the chemical potentials obey $\mu = \mu_{-} = \mu_{+} = 0$ since $\mu_{\gamma} = 0$.
- 2. The same limit as in item (a) $T \ll m$ is taken.
- 3. $g(\varepsilon)$ is obtained exactly the same as in item (a) except for the spin degeneracy, meaning:

$$\frac{g\left(\varepsilon\right)d\varepsilon}{V} = \frac{1}{2\pi^{2}}\varepsilon\sqrt{\varepsilon^{2} - m^{2}}d\varepsilon$$

Thus, we can see that at the limit $T \to 0$ the number of excited bosons goes to zero. In addition since the chemical potential is always zero, it is lower than the minimum energy $\mu = 0 < m = \varepsilon_{min}$ forbidding a condensation to appear. Hence, taking the limit of $T \to 0$ we get that all the pions have been annihilated to make a photon gas.

(c) When the photons are eliminated, there is no chemical equilibrium and the pions regain their maximum chemical potential $\mu_{max} = \varepsilon_{min} = m_{\pi}$, and the gas becomes a regular threedimensional ideal gas which can condensate. Quantitatively for $\mu \to \varepsilon_{min} = m_{\pi}$,

$$n_{+}^{>0} = n_{-}^{>0} = n^{>0} = \frac{1}{2\pi^{2}} \int_{m}^{\infty} \frac{\varepsilon\sqrt{\varepsilon^{2} - m^{2}}}{e^{\beta(\varepsilon - m)} - 1} d\varepsilon$$
(6)

Specifically at the limit $T \to 0$ The integrand is exactly 0, so there are no excited particles and all the pions occupy the ground state leading to $n_+ = n_- = n = \frac{N}{V}$ where $\frac{N}{V}$ is the density of the bosons which was maintained after the elimination of the photons from the system.

Figure 1: Energy levels and occupation for different mass relation and overall number of particles. The red particles indicate bosons as a BEC, the blue ones indicate fermions.

(d) Since the initial densities are equal the reaction enforces

$$n_{e+} = n_{e-} \qquad n_{\pi+} = n_{\pi-} \qquad n_{e+} + n_{\pi+} = \bar{n} \tag{7}$$

and for the chemical potentials themselves: $\mu_{e+} + \mu_{e-} = \mu_{\pi+} + \mu_{\pi-}$. At T = 0 we would have $\varepsilon_{F+} + \varepsilon_{F-} = \mu_{\pi+} + \mu_{\pi-}$. Again, the dispersion for e^+ and π^+ is the same as e^- and $\pi^$ respectively so the relation is simplified to $\varepsilon_F = \mu_{\pi}$

. The density of the fermions is given by:

$$n_e = \frac{1}{\pi^2} \int_{m_e}^{\infty} \frac{\varepsilon \sqrt{\varepsilon^2 - m_e^2}}{e^{\beta(\varepsilon - \mu_e)} + 1} d\varepsilon \to \frac{1}{\pi^2} \int_{m_e}^{\infty} \Theta\left(\varepsilon_F - \varepsilon\right) \varepsilon \sqrt{\varepsilon^2 - m_e^2} d\varepsilon = \frac{1}{\pi^2} \int_{m_e}^{\varepsilon_F} \varepsilon \sqrt{\varepsilon^2 - m_e^2} d\varepsilon = \frac{1}{3\pi^2} \left(\varepsilon_F^2 - m_e^2\right)^{3/2} d\varepsilon = \frac{1}{3\pi^2} \left(\varepsilon_F^2 - m_e^2\right)$$

Where the $T \to 0$ limit was taken.

From chemical equilibrium and the fact that $\varepsilon_F = \mu_\pi \leq \varepsilon_{min} = m_\pi$ it is derived that:

$$n_e = \frac{1}{3\pi^2} \left(\varepsilon_F^2 - m_e^2\right)^{3/2} = \frac{1}{3\pi^2} \left(\mu_\pi^2 - m_e^2\right)^{3/2} \le \frac{1}{3\pi^2} \left(m_\pi^2 - m_e^2\right)^{3/2} \tag{9}$$

Separation of cases:

1. If $m_{\pi} < m_e$ then $\varepsilon_F < m_e$ leading to $n_e = 0$, and $n_{\pi} = \bar{n} - n_e = \bar{n}$. Thus, the case of T = 0 yields in a pure pion gas in the ground state as a BEC, note the left scenario in Figure 1.

2. If $m_{\pi} > m_e$ then n_e is finite, thus the electrons occupy the energy levels between m_e to ε_F . As can be seen from the inequality above, if $m_{\pi} > \varepsilon_F(\bar{n})$ then $n_e = \bar{n}$ and $n_{\pi} = 0$ as it is shown in the middle scenario in Figure 1. Else, $m_e < m_{\pi} < \varepsilon_F(\bar{n})$ leading to occupation of the electrons up to the energy of m_{π} , meaning $n_e = \frac{1}{3\pi^2} (m_{\pi}^2 - m_e^2)^{3/2}$. The other particles would occupy as bosons the ground state as a BEC as noted in the right scenario in Figure 1 and their density would be $n_{\pi} = \bar{n} - n_e = \bar{n} - \frac{1}{3\pi^2} (m_{\pi}^2 - m_e^2)^{3/2}$.