Ex4546: Chemical equilibrium for misc reactions

Submitted by: Idan Wallerstein \& Nir Kastin

The problem:

(a) The following reaction occurs inside a star

$$
\gamma+\gamma \leftrightarrow e^{+}+e^{-}
$$

where γ is a photon and $e^{ \pm}$are the positron and electron, respectively. Assume overall charge neutrality and that the system is in equilibrium at temperature T. Find an expression for the densities of $e^{ \pm}$. (In general $e^{ \pm}$with mass m are relativistic). Find an explicit result for these densities in the limit $k_{B} T \ll m c^{2}$. (Hint: no conservation law for photons).
(b) Repeat (a) for the reaction

$$
\gamma+\gamma \leftrightarrow \pi^{+}+\pi^{-}
$$

where $\pi^{ \pm}$are bosons with mass m_{π}. Can these bosons become Bose-condensed if the temperature is sufficiently lowered? What are the densities at $T=0$?
(c) The photons in (b) are now eliminated from the system, but the density of the bosons is maintained. If these bosons are cooled, is there a temperature at which Bose condensation is possible? [Assume that the initial temperature satisfies $k_{B} T \ll m_{\pi} c^{2}$]. What are the densities at $T=0$?
(d) Consider initial equal densities \bar{n} for e^{+}and for e^{-}. The $e^{ \pm}$are allowed to equilibrate with $\pi^{ \pm}$via the reaction

$$
e^{+}+e^{-} \leftrightarrow \pi^{+}+\pi^{-}
$$

Write equations that determine the chemical potentials at $T \neq 0$. Consider now $T=0$ and determine if Bose Einstein condensation is possible and if so what is the condition for that. Consider both $m_{e}>m_{\pi}$ and $m_{e}<m_{\pi}$ situations.

The solution:

(a) The basic equation which relates the different components in a chemical reaction is the chemical equilibrium equation which states for the desired reaction that,

$$
\begin{equation*}
\mu_{+}+\mu_{-}=\mu_{\gamma}+\mu_{\gamma} \tag{1}
\end{equation*}
$$

Since the photons have zero rest mass they don't have a conservation law, which means $\mu_{\gamma}=0$, making the equation $\mu_{+}+\mu_{-}=0$. Moreover, charge neutrality dictates that $n_{+}\left(\mu_{+}\right)=$ $n_{-}\left(\mu_{-}\right)$and since both particles (electrons and positrons) have the same energy dispersion and spin, the function n_{+}and n_{-}will be the same with respect to their arguments, which results in having the same chemical potential $\mu_{+}=\mu_{-}$. Combining both equations we have $\mu=\mu_{-}=\mu_{+}=0$. In the case of relativistic fermions, n as a function of μ is not analytic (not given by elementary functions). The integral expression would be

$$
\begin{equation*}
n_{+}=n_{-}=n=\int_{m}^{\infty} \frac{g(\varepsilon) / V}{e^{\beta(\varepsilon-\mu)}+1} d \varepsilon=\frac{1}{\pi^{2}} \int_{m}^{\infty} \frac{\varepsilon \sqrt{\varepsilon^{2}-m^{2}}}{e^{\beta \varepsilon}+1} d \varepsilon \tag{2}
\end{equation*}
$$

Where $\mu=0$ was used and the density of states was derived from the dispersion $\varepsilon=\sqrt{k^{2}+m^{2}}$ (we use natural units $\hbar=c=1$):
We have

$$
\frac{d k}{d \varepsilon}=\frac{d}{d \varepsilon}\left(\sqrt{\varepsilon^{2}-m^{2}}\right)=\frac{\varepsilon}{\sqrt{\varepsilon^{2}-m^{2}}}
$$

The number of states between $k, k+d k$ is

$$
\begin{equation*}
\frac{g(\varepsilon) d \varepsilon}{V}=\frac{2 d^{3} k}{(2 \pi)^{3}}=\frac{8 \pi k^{2} d k}{(2 \pi)^{3}}=\frac{1}{\pi^{2}}\left(\varepsilon^{2}-m^{2}\right) \frac{d k}{d \varepsilon} d \varepsilon=\frac{1}{\pi^{2}}\left(\varepsilon^{2}-m^{2}\right) \frac{\varepsilon}{\sqrt{\varepsilon^{2}-m^{2}}} d \varepsilon=\frac{1}{\pi^{2}} \varepsilon \sqrt{\varepsilon^{2}-m^{2}} d \varepsilon \tag{3}
\end{equation*}
$$

Where the factor 2 in the first term is for spin degeneracy.
The limit $T \ll m$ is now taken, leading to a Boltzmann approximation to the occupation function since $e^{\beta \varepsilon} \gg 1$. Thus, the integral would be:

$$
\begin{align*}
& n_{+}=n_{-}=n=\frac{1}{\pi^{2}} \int_{m}^{\infty} \varepsilon \sqrt{\varepsilon^{2}-m^{2}} e^{-\beta \varepsilon} d \varepsilon=T\left(\frac{m}{\pi}\right)^{2} K_{2}\left(\frac{m}{T}\right) \approx \tag{4}\\
& \approx e^{-\beta m} \frac{m^{3}}{\pi^{2}} \sqrt{\frac{\pi}{2}}\left(\frac{1}{\beta m}\right)^{3 / 2}==2 \frac{(2 m)^{3 / 2}}{(2 \pi)^{2}} \Gamma\left(\frac{3}{2}\right) T^{3 / 2} e^{-\beta m}
\end{align*}
$$

Where $K_{2}(x)$ is the modified Bessel function of the second kind.

We can see that in the limit $T=0$ the density of the electrons/positrons is 0 , thus all the particles annihilate to make a photon gas.
(b) For the boson gas the integral for the number of particles with relativistic energy would be:

$$
\begin{align*}
& n_{+}^{>0}=n_{-}^{>0}=n^{>0}=\frac{1}{2 \pi^{2}} \int \frac{\varepsilon \sqrt{\varepsilon^{2}-m^{2}}}{e^{\beta(\varepsilon-\mu)}-1} d \varepsilon \approx \frac{1}{2 \pi^{2}} \int_{m}^{\infty} \varepsilon \sqrt{\varepsilon^{2}-m^{2}} e^{-\beta \varepsilon} d \varepsilon= \tag{5}\\
& =\frac{T}{2}\left(\frac{m}{\pi}\right)^{2} K_{2}\left(\frac{m}{T}\right) \approx \frac{(2 m)^{3 / 2}}{(2 \pi)^{2}} \Gamma\left(\frac{3}{2}\right) T^{3 / 2} e^{-\beta m}
\end{align*}
$$

Where:

1. Like item (a) the chemical potentials obey $\mu=\mu_{-}=\mu_{+}=0$ since $\mu_{\gamma}=0$.
2. The same limit as in item (a) $-T \ll m$ is taken.
3. $g(\varepsilon)$ is obtained exactly the same as in item (a) except for the spin degeneracy, meaning:

$$
\frac{g(\varepsilon) d \varepsilon}{V}=\frac{1}{2 \pi^{2}} \varepsilon \sqrt{\varepsilon^{2}-m^{2}} d \varepsilon
$$

Thus, we can see that at the limit $T \rightarrow 0$ the number of excited bosons goes to zero. In addition since the chemical potential is always zero, it is lower than the minimum energy $\mu=0<m=\varepsilon_{\text {min }}$ forbidding a condensation to appear. Hence, taking the limit of $T \rightarrow 0$ we get that all the pions have been annihilated to make a photon gas.
(c) When the photons are eliminated, there is no chemical equilibrium and the pions regain their maximum chemical potential $\mu_{\max }=\varepsilon_{\min }=m_{\pi}$, and the gas becomes a regular threedimensional ideal gas which can condensate. Quantitatively for $\mu \rightarrow \varepsilon_{\min }=m_{\pi}$,

$$
\begin{equation*}
n_{+}^{>0}=n_{-}^{>0}=n^{>0}=\frac{1}{2 \pi^{2}} \int_{m}^{\infty} \frac{\varepsilon \sqrt{\varepsilon^{2}-m^{2}}}{e^{\beta(\varepsilon-m)}-1} d \varepsilon \tag{6}
\end{equation*}
$$

Specifically at the limit $T \rightarrow 0$ The integrand is exactly 0 , so there are no excited particles and all the pions occupy the ground state leading to $n_{+}=n_{-}=n=\frac{N}{V}$ where $\frac{N}{V}$ is the density of the bosons which was maintained after the elimination of the photons from the system.

Figure 1: Energy levels and occupation for different mass relation and overall number of particles. The red particles indicate bosons as a BEC, the blue ones indicate fermions.
(d) Since the initial densities are equal the reaction enforces

$$
\begin{equation*}
n_{e+}=n_{e-} \quad n_{\pi+}=n_{\pi-} \quad n_{e+}+n_{\pi+}=\bar{n} \tag{7}
\end{equation*}
$$

and for the chemical potentials themselves: $\mu_{e+}+\mu_{e-}=\mu_{\pi+}+\mu_{\pi-}$. At $T=0$ we would have $\varepsilon_{F+}+\varepsilon_{F-}=\mu_{\pi+}+\mu_{\pi-}$. Again, the dispersion for e^{+}and π^{+}is the same as e^{-}and π^{-} respectively so the relation is simplified to $\varepsilon_{F}=\mu_{\pi}$
. The density of the fermions is given by:

$$
\begin{equation*}
n_{e}=\frac{1}{\pi^{2}} \int_{m_{e}}^{\infty} \frac{\varepsilon \sqrt{\varepsilon^{2}-m_{e}^{2}}}{e^{\beta\left(\varepsilon-\mu_{e}\right)+1}} d \varepsilon \rightarrow \frac{1}{\pi^{2}} \int_{m_{e}}^{\infty} \Theta\left(\varepsilon_{F}-\varepsilon\right) \varepsilon \sqrt{\varepsilon^{2}-m_{e}^{2}} d \varepsilon=\frac{1}{\pi^{2}} \int_{m_{e}}^{\varepsilon_{F}} \varepsilon \sqrt{\varepsilon^{2}-m_{e}^{2}} d \varepsilon=\frac{1}{3 \pi^{2}}\left(\varepsilon_{F}^{2}-m_{e}^{2}\right)^{3 / 2} \tag{8}
\end{equation*}
$$

Where the $T \rightarrow 0$ limit was taken.
From chemical equilibrium and the fact that $\varepsilon_{F}=\mu_{\pi} \leq \varepsilon_{\min }=m_{\pi}$ it is derived that:

$$
\begin{equation*}
n_{e}=\frac{1}{3 \pi^{2}}\left(\varepsilon_{F}^{2}-m_{e}^{2}\right)^{3 / 2}=\frac{1}{3 \pi^{2}}\left(\mu_{\pi}^{2}-m_{e}^{2}\right)^{3 / 2} \leq \frac{1}{3 \pi^{2}}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{3 / 2} \tag{9}
\end{equation*}
$$

Separation of cases:

1. If $m_{\pi}<m_{e}$ then $\varepsilon_{F}<m_{e}$ leading to $n_{e}=0$, and $n_{\pi}=\bar{n}-n_{e}=\bar{n}$. Thus, the case of $T=0$ yields in a pure pion gas in the ground state as a BEC, note the left scenario in Figure 1.
2. If $m_{\pi}>m_{e}$ then n_{e} is finite, thus the electrons occupy the energy levels between m_{e} to ε_{F}. As can be seen from the inequality above, if $m_{\pi}>\varepsilon_{F}(\bar{n})$ then $n_{e}=\bar{n}$ and $n_{\pi}=0$ as it is shown in the middle scenario in Figure 1. Else, $m_{e}<m_{\pi}<\varepsilon_{F}(\bar{n})$ leading to occupation of the electrons up to the energy of m_{π}, meaning $n_{e}=\frac{1}{3 \pi^{2}}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{3 / 2}$. The other particles would occupy as bosons the ground state as a BEC as noted in the right scenario in Figure 1 and their density would be $n_{\pi}=\bar{n}-n_{e}=\bar{n}-\frac{1}{3 \pi^{2}}\left(m_{\pi}^{2}-m_{e}^{2}\right)^{3 / 2}$.
