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The problem:

The reaction γ + γ ↔ e+ + e− occurs inside a star, where γ is a photon and e± are the positron
and electron (mass m). In general e± are relativistic. Assume overall charge neutrality, and that
the system is in equilibrium at temperature T .

(1) Find an expression for the densities of e±

(2) Find these densities in the limit T � mc2

(3) Solve the same problem for the reaction γ + γ ↔ π+ + π−, where π are bosons with mass M
(4) Can the π bosons become Bose-condensed if the temperature is sufficiently lowered? Explain
the result physically.

The solution:

(1) From equilibrium we deduce that 2µγ = µe+ + µe− . Since photons have zero chemical potential
we define µ ≡ µe− and as a result µ = −µe+ . The density of fermions can be calculated from the
occupation function f(ε−µ). For a relativistic particle, the energy is given by ε = mc2

√
1 + (p/mc)2,

with m the electron mass, and for electrons/positrons, the spin gives a factor of 2 in the occupation,
so we get

ne± =
2

V

∑
p

1

eβmc
2
√

1+(p/mc)2±βµ + 1
. (1)

From charge neutrality we know that these densities are equal, ne− = ne+ . Noting that every term
in the series in Eq. (1) is monotonic in µ, charge neutrality demands µ = 0.

We can also write the densities as an integral, using (2π)3

V as the spacing in momentum space,

ne =
2

(2π)3

∫ ∞
0

1

eβmc
2
√

1+(p/mc)2 + 1
d3p . (2)

(2) In the limit βmc2 � 1, the main contributions in the integral in Eq. (2) come from small p. Thus

we can approximate the particles energies as non-relativistic and use the Boltzmann approximation
to yield

ε ≈ mc2 +
p2

2m
, (3)

ne '
2

(2π)3

∫ ∞
0

1

eβ(mc2+p2/2m) + 1
d3p ' 2e−βmc

2

(2π)3

∫ ∞
0

e−
βp2

2m d3p =
2e−βmc

2

λ3T
,

where λT ≡
(

m
2πβ

)−1/2
. This result is similar to what we would expect from a classical ideal gas.

(3) Now we have π± bosons, with mass M , so the occupation function changes to Bose-Einstein,
and the densities become

nπ± =
1

V

∑
p

1

eβMc2
√

1+(p/Mc)2±βµ − 1
, (4)

1



where µ ≡ µπ− = −µπ+ . For bosons, the chemical potential must be smaller than the ground state
energy, which in our case demands −Mc2 < µ < Mc2. In that region, similarly to the fermionic
case, each term in the series in Eq. (4) is monotonic in µ, so charge neutrality assures us that µ = 0
here too.
Writing the densities as integrals, we have

nπ =
1

(2π)3

∫
1

eβMc2
√

1+(p/Mc)2 − 1
d3p . (5)

In the T �Mc2 limit, the same logic applies to justify the Boltzmann approximation, and we have

nπ '
e−βMc2

(2π)3

∫ ∞
0

e−
βp2

2M d3p =
e−βMc2

λ3T
. (6)

(4) Since we showed that charge neutrality demands µ = 0, no condensation is possible. In more
detail - to have condensation, the chemical potential must tend to the ground state energy, which
in our case would mean µ → ±Mc2, but this is impossible and would mean a net charge in the
system.
To understand what happens physically, we examine Eq. (6),

nπ '
e−βMc2

λ3T
∝ e−Mc2/T

T 3/2
(7)

so when we lower the temperature, the densities become smaller and smaller, i.e. there are less
particles instead of the particles being in condensation.
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