# Ex4220: Cheimchal equilibrium: $\mathrm{H} 2[3 \mathrm{D}]==2 \mathrm{H}[2 \mathrm{D}]$ 

Submitted by: Edo Hogeg

## The problem:

An $H_{2}$ molecule (mass $2 \mathrm{~m}_{H}$ ) decomposes into $H$ atoms when it is absorbed upon a certain metallic surface. The $H_{2}$ and $H$ have an energy gain $\varepsilon_{2}$ and $\varepsilon_{1}$ per atom respectively, related to each state. The binding of the $H$ atoms is not to particular sites on the surface: the $H$ atoms are free to move on the surface. Consider the $H_{2}$ and $H$ as an ideal gas, and express the surface density of the $H$ atoms as a function of the $H_{2}$ pressure.

## The solution:

When the $H_{2}$ and $H$ come to equilibrium (that is the system's free energy is minimized) their chemical potential are equal to zero. We'll start by finding the partition function.

$$
\begin{align*}
& Z_{1 H_{2}}=\int \frac{d^{3} x d^{3} p}{(2 \pi)^{3}} e^{-\beta\left(\frac{p^{2}}{2(2 m)}+\varepsilon_{2}\right)}=e^{-\beta \varepsilon_{2}} V\left(\frac{m}{\beta \pi}\right)^{\frac{3}{2}}=e^{-\beta \varepsilon_{2}} \frac{2^{\frac{3}{2}} V}{\lambda_{T}^{3}}  \tag{1}\\
& Z_{1 H}=\int \frac{d^{2} x d^{2} p}{(2 \pi)^{2}} e^{-\beta\left(\frac{p^{2}}{2 m}+\varepsilon_{1}\right)}=e^{-\beta \varepsilon_{1}} A \frac{m}{2 \beta \pi}=e^{-\beta \varepsilon_{1}} \frac{A}{\lambda_{T}^{2}} \tag{2}
\end{align*}
$$

Now let's assume there are $N H_{2}$ molecules to begin with. With the definition of a macroscopic reaction coordinate $n$ (See lecture notes: [5.3] The law of mass action) we know that in equilibrium there are $N-n H_{2}$ molecules and $2 n H$ atoms. Recalling both $H_{2}$ and $H$ are ideal gasses we obtain:

$$
\begin{gather*}
Z_{H_{2}}=\frac{1}{(N-n)!} Z_{1 H_{2}}^{N-n}=\frac{e^{-\beta \varepsilon_{2}(N-n)}}{(N-n)!}\left(V\left(\frac{m}{\beta \pi}\right)^{\frac{3}{2}}\right)^{N-n}  \tag{3}\\
Z_{H}=\frac{1}{(2 n)!} Z_{1 H}^{2 n}=\frac{e^{-\beta \varepsilon_{1}(2 n)}}{(2 n)!}\left(A \frac{m}{2 \beta \pi}\right)^{2 n}  \tag{4}\\
F_{H_{2}}=-\frac{1}{\beta} \ln \left(Z_{H_{2}}\right)=-\frac{1}{\beta}\left[-\beta \varepsilon_{2}(N-n)-(N-n) \ln (N-n)+(N-n)+(N-n) \ln \left(V\left(\frac{m}{\beta \pi}\right)^{\frac{3}{2}}\right)\right]  \tag{5}\\
F_{H}=-\frac{1}{\beta} \ln \left(Z_{H}\right)=-\frac{1}{\beta}\left[-\beta \varepsilon_{1}(2 n)-2 n \ln (2 n)+2 n+2 n \ln \left(A \frac{m}{2 \beta \pi}\right)\right] \tag{6}
\end{gather*}
$$

Note that Stirling's approximation $\ln (N!) \approx N \ln (N)-N$ was used in (5) and (6). We would like to first find the $\mathrm{H}_{2}$ pressure, Then we'll equilibrate the chemical potential to find our desired solution.

$$
\begin{equation*}
P=-\frac{\partial F_{H_{2}}}{\partial V}=\frac{N-n}{\beta V} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{H_{2}}+\mu_{H}=0 \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial F_{H_{2}}}{\partial n}+\frac{\partial F_{H}}{\partial n}=0  \tag{9}\\
& -2 \ln \left(\frac{2 n}{A}\right)-2 \beta \varepsilon_{1}+2 \ln \left(\frac{m}{2 \pi \beta}\right)+\ln \left(\frac{N-n}{V \beta}\right)+\ln (\beta)+\beta \varepsilon_{2}-\frac{3}{2} \ln \left(\frac{m}{\pi \beta}\right)=0 \tag{10}
\end{align*}
$$

Denoting the density of the $H$ atoms:

$$
\begin{equation*}
\mathcal{N}=\frac{2 n}{A} \tag{11}
\end{equation*}
$$

Finally the density $\mathcal{N}$ of the $H$ atoms is:

$$
\begin{equation*}
\mathcal{N}(P)=\frac{e^{-\frac{\beta}{2}\left(2 \varepsilon_{1}-\varepsilon_{2}\right)}}{2^{\frac{3}{4}}} \sqrt{\frac{\beta P}{\lambda_{T}}} \tag{12}
\end{equation*}
$$

