Ex3711: Fermions in gravitation field of a star
Submitted by: Barak Azoulai
The problem:

Consider a neutron star as non-relativistic gas of non-interacting neutrons of mass m in a spherical
symmetric equilibrium configuration. The neutrons are held together by a gravitational potential
—mMG /r of a heavy object of mass M and radius ro at the center of the star (G is the gravity
constant and r is the distance from the center).

(a) Give an expression for n(r) at 7" > 0 using Li functions.
(b) Consider the neutrons as fermions at 7" = 0 and find n(r), for a given n(rg).
(c) Calculate it explicitly in the Boltzmann approximation.
(d) Repeat items (b) and (c) for a general potential —A/r.

(e) For the case of T=0, what is the upper bound on n(rg) and on the total number N of neutrons
if the chemical potential is increased towards zero. Distinguish, a > 2 from a < 2.

The solution:

This problem is about neutrons (which are fermions) in a gravitational field, one can define a small
volume dV, take advantage of the fact that the neutrons are in an equilibrium configuration and
demand that the chemical potential y is the same for each volume dV'.

(a) The density of particles is defined such that the number of particles in a volume dV is N(r) =
n(r)dV, which is calculated by N (r) = [ g(e) f(e—p)de. The energies of the one particle Hamiltonian
at a specific radius r in a box of volume dV are:
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With U(r) = mTMG The density of states in a volume dV is:
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For fermions the particle distribution f(e — p) = (eﬂ (e=n) 4 1)_1, and the general solution for the
density of the particles is given by:
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With z = 8(e+ U(r)), « =3/2, u= 3 (u+ U(r)) and using ?f::;ﬁ = —I'(a)Lig(—€")
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(b) At the limit of T = 0, one can take Eq. (3) and use the expansion I'(a)Lia(—e*) &~ —2u®, or
alternatively calculate n(r) explicitly and noting that f(e — u) becomes a step function ©(u — €).
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To obtain pu we set r = rg in Eq. (4) and express it with n(rg), one obtains:
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For T' = 0 one gets the density of particles as:
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(¢) At the Boltzmann approximation, one can take the limit of Li function Li(—e") ~ —e" and get:
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Where we used (Ar)? = 2r/mT, and T'(3/2) = /m/2. The same result can be obtained by per-
forming the integral for n(r) explicitly and noting that f(e — p) = (65(6_“) + 1)_1 ~ e Bl
Expressing p using n(rg) will give us:
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At the Boltzmann approximation one gets the density of particles as:
n(r) = n(ro) exp [B (U(r) — U(ro))] (10)

Noting that this is the expected result because in canonical equlibrium p(r) oc e=5(€).

(d) Repeating items (b) and (c) will give the same results but changing r to r%, so we get the
same Eq. (6) & (10) but with
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(e) Increasing p toward zero is done by increasing n(rg) as one can see from Eq. (5). At the limit
of 4 — 0 one obtains:
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The total number of neutrons (for a # 2):
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The integral diverges for v < 2 and converges for a > 2 to:
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For ;1 = 0 the upper bound for the density n(rg) is given by
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