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The problem:

Consider a neutron star as non-relativistic gas of non-interacting neutrons of mass m in a spherical
symmetric equilibrium configuration. The neutrons are held together by a gravitational potential
−mMG/r of a heavy object of mass M and radius r0 at the center of the star (G is the gravity
constant and r is the distance from the center).

(a) Give an expression for n(r) at T > 0 using Li functions.

(b) Consider the neutrons as fermions at T = 0 and find n(r), for a given n(r0).

(c) Calculate it explicitly in the Boltzmann approximation.

(d) Repeat items (b) and (c) for a general potential −A/rα.

(e) For the case of T=0, what is the upper bound on n(r0) and on the total number N of neutrons
if the chemical potential is increased towards zero. Distinguish, a > 2 from a < 2.

The solution:
This problem is about neutrons (which are fermions) in a gravitational field, one can define a small
volume dV , take advantage of the fact that the neutrons are in an equilibrium configuration and
demand that the chemical potential µ is the same for each volume dV .

(a) The density of particles is defined such that the number of particles in a volume dV is N(r) =
n(r)dV , which is calculated by N(r) =

∫
g(ε)f(ε−µ)dε. The energies of the one particle Hamiltonian

at a specific radius r in a box of volume dV are:

ε(r) =
p2

2m
− U(r). (1)

With U(r) = mMG
r . The density of states in a volume dV is:

g(ε) = 2 · 4πm3/2 [2 (ε+ U(r))]1/2 · dV

(2π)3
=

(2m)3/2

2π2
(ε+ U(r))1/2 dV. (2)

For fermions the particle distribution f(ε − µ) =
(
eβ(ε−µ) + 1

)−1
, and the general solution for the

density of the particles is given by:

n(r) =
(2m)3/2

2π2

∞∫
−U(r)

(ε+ U(r))1/2

eβ(ε−µ) + 1
dε =

(2mT )3/2

2π2

∞∫
0

xα−1dx

ex−u + 1
= −(2mT )3/2

2π2
Γ(3/2)Li3/2(−eu) (3)

With x = β (ε+ U(r)), α = 3/2, u = β (µ+ U(r)) and using
∞∫
0

xα−1dx
ex−u+1

= −Γ(α)Liα(−eu)

(b) At the limit of T = 0, one can take Eq. (3) and use the expansion Γ(α)Liα(−eu) ≈ − 1
αu

α, or
alternatively calculate n(r) explicitly and noting that f(ε− µ) becomes a step function Θ(µ− ε).

n(r) =
(2m)3/2

2π2

∞∫
−U(r)

Θ(µ− ε) (ε+ U(r))1/2 dε =
(2m)3/2

3π2
(µ+ U(r))3/2 (4)
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To obtain µ we set r = r0 in Eq. (4) and express it with n(r0), one obtains:

µ =

(
3π2n(r0)

)2/3
2m

− U(r0) (5)

For T = 0 one gets the density of particles as:

n(r) =
(2m)3/2

3π2

[(
3π2n(r0)

)2/3
2m

+ U(r)− U(r0)

]3/2
(6)

(c) At the Boltzmann approximation, one can take the limit of Li function Li(−eu) ≈ −eu and get:

n(r) = −(2mT )3/2

2π2
Γ(3/2)Li3/2(−eu) (7)

≈ (2mT )3/2

2π2

√
π

2
exp [β (µ+ U(r))] =

2

λ3T
exp [β (µ+ U(r))] (8)

Where we used (λT )2 = 2π/mT , and Γ(3/2) =
√
π/2. The same result can be obtained by per-

forming the integral for n(r) explicitly and noting that f(ε − µ) =
(
eβ(ε−µ) + 1

)−1 ≈ e−β(ε−µ).
Expressing µ using n(r0) will give us:

µ = T ln

(
1

2
n(r0)λ

3
T

)
− U(r0) (9)

At the Boltzmann approximation one gets the density of particles as:

n(r) = n(r0) exp [β (U(r)− U(r0))] (10)

Noting that this is the expected result because in canonical equlibrium p(r) ∝ e−β(ε).

(d) Repeating items (b) and (c) will give the same results but changing r to rα, so we get the
same Eq. (6) & (10) but with

U(r) =
A

rα
(11)

(e) Increasing µ toward zero is done by increasing n(r0) as one can see from Eq. (5). At the limit
of µ→ 0 one obtains:

n(r)T=0 =
µ→0

(2mA)3/2

3π2
r−3α/2 (12)

The total number of neutrons (for α 6= 2):

Ntotal =

∞∫
r0

n(r)4πr2dr =
27/2(mA)3/2

3π

∞∫
r0

r2−3α/2dr (13)

=
27/2(mA)3/2

9π

(
1− α

2

)−1
r3(1−α/2)

∣∣∣∣∣
∞

r0

(14)

The integral diverges for α ≤ 2 and converges for α > 2 to:

Ntotal =
27/2(mA)3/2

9π

(
1− α

2

)−1
r
3(1−α/2)
0 (15)

For µ = 0 the upper bound for the density n(r0) is given by

n(r0)T=0,µ=0 =

(
2mA

rα0

)3/2 1

3π2
(16)
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