Ex3711: Fermions in gravitation field of a star

Submitted by: Barak Azoulai

The problem:

Consider a neutron star as non-relativistic gas of non-interacting neutrons of mass m in a spherical symmetric equilibrium configuration. The neutrons are held together by a gravitational potential $-m M G / r$ of a heavy object of mass M and radius r_{0} at the center of the star (G is the gravity constant and r is the distance from the center).
(a) Give an expression for $n(r)$ at $T>0$ using Li functions.
(b) Consider the neutrons as fermions at $T=0$ and find $n(r)$, for a given $n\left(r_{0}\right)$.
(c) Calculate it explicitly in the Boltzmann approximation.
(d) Repeat items (b) and (c) for a general potential $-A / r^{\alpha}$.
(e) For the case of $\mathrm{T}=0$, what is the upper bound on $n\left(r_{0}\right)$ and on the total number N of neutrons if the chemical potential is increased towards zero. Distinguish, $a>2$ from $a<2$.

The solution:
This problem is about neutrons (which are fermions) in a gravitational field, one can define a small volume $d V$, take advantage of the fact that the neutrons are in an equilibrium configuration and demand that the chemical potential μ is the same for each volume $d V$.
(a) The density of particles is defined such that the number of particles in a volume $d V$ is $N(r)=$ $n(r) d V$, which is calculated by $N(r)=\int g(\epsilon) f(\epsilon-\mu) d \epsilon$. The energies of the one particle Hamiltonian at a specific radius r in a box of volume $d V$ are:

$$
\begin{equation*}
\epsilon(r)=\frac{p^{2}}{2 m}-U(r) \tag{1}
\end{equation*}
$$

With $U(r)=\frac{m M G}{r}$. The density of states in a volume $d V$ is:

$$
\begin{equation*}
g(\epsilon)=2 \cdot 4 \pi m^{3 / 2}[2(\epsilon+U(r))]^{1 / 2} \cdot \frac{d V}{(2 \pi)^{3}}=\frac{(2 m)^{3 / 2}}{2 \pi^{2}}(\epsilon+U(r))^{1 / 2} d V . \tag{2}
\end{equation*}
$$

For fermions the particle distribution $f(\epsilon-\mu)=\left(e^{\beta(\epsilon-\mu)}+1\right)^{-1}$, and the general solution for the density of the particles is given by:

$$
\begin{equation*}
n(r)=\frac{(2 m)^{3 / 2}}{2 \pi^{2}} \int_{-U(r)}^{\infty} \frac{(\epsilon+U(r))^{1 / 2}}{e^{\beta(\epsilon-\mu)}+1} d \epsilon=\frac{(2 m T)^{3 / 2}}{2 \pi^{2}} \int_{0}^{\infty} \frac{x^{\alpha-1} d x}{e^{x-u}+1}=-\frac{(2 m T)^{3 / 2}}{2 \pi^{2}} \Gamma(3 / 2) \operatorname{Li}_{3 / 2}\left(-e^{u}\right) \tag{3}
\end{equation*}
$$

With $x=\beta(\epsilon+U(r)), \alpha=3 / 2, u=\beta(\mu+U(r))$ and using $\int_{0}^{\infty} \frac{x^{\alpha-1} d x}{e^{x-u}+1}=-\Gamma(\alpha) \operatorname{Li}_{\alpha}\left(-e^{u}\right)$
(b) At the limit of $T=0$, one can take Eq. (3) and use the expansion $\Gamma(\alpha) \operatorname{Li}_{\alpha}\left(-e^{u}\right) \approx-\frac{1}{\alpha} u^{\alpha}$, or alternatively calculate $n(r)$ explicitly and noting that $f(\epsilon-\mu)$ becomes a step function $\Theta(\mu-\epsilon)$.

$$
\begin{equation*}
n(r)=\frac{(2 m)^{3 / 2}}{2 \pi^{2}} \int_{-U(r)}^{\infty} \Theta(\mu-\epsilon)(\epsilon+U(r))^{1 / 2} d \epsilon=\frac{(2 m)^{3 / 2}}{3 \pi^{2}}(\mu+U(r))^{3 / 2} \tag{4}
\end{equation*}
$$

To obtain μ we set $r=r_{0}$ in Eq. (4) and express it with $n\left(r_{0}\right)$, one obtains:

$$
\begin{equation*}
\mu=\frac{\left(3 \pi^{2} n\left(r_{0}\right)\right)^{2 / 3}}{2 m}-U\left(r_{0}\right) \tag{5}
\end{equation*}
$$

For $T=0$ one gets the density of particles as:

$$
\begin{equation*}
n(r)=\frac{(2 m)^{3 / 2}}{3 \pi^{2}}\left[\frac{\left(3 \pi^{2} n\left(r_{0}\right)\right)^{2 / 3}}{2 m}+U(r)-U\left(r_{0}\right)\right]^{3 / 2} \tag{6}
\end{equation*}
$$

(c) At the Boltzmann approximation, one can take the limit of Li function $\operatorname{Li}\left(-e^{u}\right) \approx-e^{u}$ and get:

$$
\begin{align*}
n(r) & =-\frac{(2 m T)^{3 / 2}}{2 \pi^{2}} \Gamma(3 / 2) \operatorname{Li}_{3 / 2}\left(-e^{u}\right) \tag{7}\\
& \approx \frac{(2 m T)^{3 / 2}}{2 \pi^{2}} \frac{\sqrt{\pi}}{2} \exp [\beta(\mu+U(r))]=\frac{2}{\lambda_{T}^{3}} \exp [\beta(\mu+U(r))] \tag{8}
\end{align*}
$$

Where we used $\left(\lambda_{T}\right)^{2}=2 \pi / m T$, and $\Gamma(3 / 2)=\sqrt{\pi} / 2$. The same result can be obtained by performing the integral for $n(r)$ explicitly and noting that $f(\epsilon-\mu)=\left(e^{\beta(\epsilon-\mu)}+1\right)^{-1} \approx e^{-\beta(\epsilon-\mu)}$. Expressing μ using $n\left(r_{0}\right)$ will give us:

$$
\begin{equation*}
\mu=T \ln \left(\frac{1}{2} n\left(r_{0}\right) \lambda_{T}^{3}\right)-U\left(r_{0}\right) \tag{9}
\end{equation*}
$$

At the Boltzmann approximation one gets the density of particles as:

$$
\begin{equation*}
n(r)=n\left(r_{0}\right) \exp \left[\beta\left(U(r)-U\left(r_{0}\right)\right)\right] \tag{10}
\end{equation*}
$$

Noting that this is the expected result because in canonical equlibrium $p(r) \propto e^{-\beta(\epsilon)}$.
(d) Repeating items (b) and (c) will give the same results but changing r to r^{α}, so we get the same Eq. (6) \& (10) but with

$$
\begin{equation*}
U(r)=\frac{A}{r^{\alpha}} \tag{11}
\end{equation*}
$$

(e) Increasing μ toward zero is done by increasing $n\left(r_{0}\right)$ as one can see from Eq. (5). At the limit of $\mu \rightarrow 0$ one obtains:

$$
\begin{equation*}
n(r)_{T=0} \underset{\mu \rightarrow 0}{=} \frac{(2 m A)^{3 / 2}}{3 \pi^{2}} r^{-3 \alpha / 2} \tag{12}
\end{equation*}
$$

The total number of neutrons (for $\alpha \neq 2$):

$$
\begin{align*}
N_{\text {total }} & =\int_{r_{0}}^{\infty} n(r) 4 \pi r^{2} d r=\frac{2^{7 / 2}(m A)^{3 / 2}}{3 \pi} \int_{r_{0}}^{\infty} r^{2-3 \alpha / 2} d r \tag{13}\\
& =\left.\frac{2^{7 / 2}(m A)^{3 / 2}}{9 \pi}\left(1-\frac{\alpha}{2}\right)^{-1} r^{3(1-\alpha / 2)}\right|_{r_{0}} ^{\infty} \tag{14}
\end{align*}
$$

The integral diverges for $\alpha \leq 2$ and converges for $\alpha>2$ to:

$$
\begin{equation*}
N_{\text {total }}=\frac{2^{7 / 2}(m A)^{3 / 2}}{9 \pi}\left(1-\frac{\alpha}{2}\right)^{-1} r_{0}^{3(1-\alpha / 2)} \tag{15}
\end{equation*}
$$

For $\mu=0$ the upper bound for the density $n\left(r_{0}\right)$ is given by

$$
\begin{equation*}
n\left(r_{0}\right)_{T=0, \mu=0}=\left(\frac{2 m A}{r_{0}^{\alpha}}\right)^{3 / 2} \frac{1}{3 \pi^{2}} \tag{16}
\end{equation*}
$$

