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The problem:

Consider an artificial model of neutron star where the gas of N neutrons is held together by a
gravitational potential U = −mMG

r generated by the solid core of the star. (M and r0 are the mass
and radius of the core, G - gravity constant, m - mass of the neutrons and r - distance from the
center).

(1) Assume the neutron gas as Fermi gas. Find the density n(r) at r > r0 for T = 0 and the fermi
energy εf (N).

(2) Find the flux of particles that escapes the gravitational field of the core for low temperature,
(µ ≈ εf ).

(3) Write a differential equation for N(t) as a function of time.

(4) Find the the condition in which Boltzmann approximation is valid for all the particles in the
system.

The solution:

(1) The number of states

N = 2
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After integrating over the angular degrees of freedom we get-

n(r) = 2

∫ pf

0

4πp2

(2π)3
dp = 2

4π

3(2π)3
pf

3

Where pf is the fermi momentum.

After substituting ε = p2

2m + U ⇒ pf = [2m(εf − U)]
1
2 we get
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The fermi energy can be found from calculating the total number of particles N

N =
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Where rm is the maximal radius of which there are neutrons, and can be found from the
condition n(r) > 0

(εf +
mMG

r
)
3
2 > 0 ⇒ εf > −

GMm

r
⇒ rm =

GMm

|εf |

(2) For T > 0 there is emission of particles (see appendix). In case of low temperature (µ ≈ εf )
the particles that escapes obey Boltzmann statistics, it can be seen from the fugacity

z = eβ(µ+U) = e−β(|εf |+
GMm

r
) << 1

According to the detailed balance principle the number of particles emitted from the star is
the same as the number of particles incident to the star

Je = Ji = J

And therefore we can avoid the details of the potential and calculate the incoming free particles
that are not influenced by it.

The number of particles at speed v = (2εkm )
1
2 out side the potential U

N(v) = V (
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Which is Boltzmann velocity distribution. Accordingly the incident flux
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We got Richardson law, Where the fermi energy (εf ) is the work function W .

The total flow of emitted newtrons is the flux summed over the emitting surface I = J4πr2m.

(3)

I =
dN(t)

dt
=

2r2m
π1/2

mT 2e−|εf (N(t))|/T

We can see from this equation that N doesn’t stay constant, therefore the system is out of
equilibrium with the environment and Richardson law will be a good approximation only for
a short time after the change of temperature from T = 0 to T > 0.

(4) The condition for Boltzmann approximation

z = eβ(µ−U) = eβ(−|µ|+
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r
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The last equality says that if Boltzmann approximation is valid at the surface of the core (r0),
then it will be valid at any distance (r > r0) as well.

Appendix - The density of particles at radius r and T > 0.

The total number of particles is given by the integral over the fermi distribution, with factor
of 2 for spin 1

2 degeneracy.
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Where z = eβ(µ−U) is the fugacity and U = −mMG
r .

The number of particles in a volume element at radius r
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After substituting p = (2mεk)
1
2 ⇒ p2dp = 1
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3
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1
2 , Where εk is the kinetic energy,

and integrating over the angular degrees of freedom we get
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Switching to dimensionless paramater x = βε ⇒ εk
1
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Observing the Last expression we see that n(r → ∞) > 0 which says there is emission of
particles for T > 0. For T = 0 we get same result as section [1] i.e. no emmition.
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