Ex3710: Fermions in gravitational field of a star

Submitted by: Ofek Asban

The problem:

Consider an artificial model of neutron star where the gas of N neutrons is held together by a gravitational potential $U=-\frac{m M G}{r}$ generated by the solid core of the star. (M and r_{0} are the mass and radius of the core, G - gravity constant, m - mass of the neutrons and r - distance from the center).
(1) Assume the neutron gas as Fermi gas. Find the density $n(r)$ at $r>r_{0}$ for $T=0$ and the fermi energy $\epsilon_{f}(N)$.
(2) Find the flux of particles that escapes the gravitational field of the core for low temperature, $\left(\mu \approx \epsilon_{f}\right)$.
(3) Write a differential equation for $N(t)$ as a function of time.
(4) Find the the condition in which Boltzmann approximation is valid for all the particles in the system.

The solution:

(1) The number of states

$$
N=2 \int_{r} \int_{p} \frac{d^{3} r d^{3} p}{(2 \pi)^{3}} \Rightarrow n(r)=2 \int_{p} \frac{d^{3} p}{(2 \pi)^{3}}
$$

After integrating over the angular degrees of freedom we get-

$$
n(r)=2 \int_{0}^{p_{f}} \frac{4 \pi p^{2}}{(2 \pi)^{3}} d p=2 \frac{4 \pi}{3(2 \pi)^{3}} p_{f}^{3}
$$

Where p_{f} is the fermi momentum.
After substituting $\epsilon=\frac{p^{2}}{2 m}+U \quad \Rightarrow \quad p_{f}=\left[2 m\left(\epsilon_{f}-U\right)\right]^{\frac{1}{2}}$ we get

$$
n(r)=\frac{(2 m)^{\frac{3}{2}}}{3 \pi^{2}}\left(\epsilon_{f}+\frac{m M G}{r}\right)^{\frac{3}{2}}
$$

The fermi energy can be found from calculating the total number of particles N

$$
N=\int_{r} n(r) d^{3} r=4 \pi \int_{r_{0}}^{r_{m}} n(r) r^{2} d r=\frac{4}{3 \pi}(2 m)^{\frac{3}{2}} \int_{r_{0}}^{r_{m}}\left(\epsilon_{f}+\frac{m M G}{r}\right)^{\frac{3}{2}} r^{2} d r \quad \Rightarrow \quad \epsilon_{f}(N)
$$

Where r_{m} is the maximal radius of which there are neutrons, and can be found from the condition $n(r)>0$

$$
\left(\epsilon_{f}+\frac{m M G}{r}\right)^{\frac{3}{2}}>0 \Rightarrow \epsilon_{f}>-\frac{G M m}{r} \Rightarrow r_{m}=\frac{G M m}{\left|\epsilon_{f}\right|}
$$

(2) For $T>0$ there is emission of particles (see appendix). In case of low temperature $\left(\mu \approx \epsilon_{f}\right)$ the particles that escapes obey Boltzmann statistics, it can be seen from the fugacity

$$
z=e^{\beta(\mu+U)}=e^{-\beta\left(\left|\epsilon_{f}\right|+\frac{G M m}{r}\right)} \ll 1
$$

According to the detailed balance principle the number of particles emitted from the star is the same as the number of particles incident to the star

$$
J_{e}=J_{i}=J
$$

And therefore we can avoid the details of the potential and calculate the incoming free particles that are not influenced by it.

The number of particles at speed $v=\left(\frac{2 \epsilon_{k}}{m}\right)^{\frac{1}{2}}$ out side the potential U

$$
N(v)=V\left(\frac{m}{2 \pi}\right)^{3} e^{-\beta\left(\frac{1}{2} m v^{2}-\mu\right)} 4 \pi v^{2} d v
$$

Which is Boltzmann velocity distribution. Accordingly the incident flux

$$
J=\frac{1}{4} \int \frac{N(v)}{V} v d v=\frac{m^{3}}{(2 \pi)^{2}} e^{\beta \mu} \int_{0}^{\infty} e^{-\beta \frac{1}{2} m v^{2}} v^{3} d v=\frac{m}{2(\pi)^{\frac{3}{2}}} T^{2} e^{\mu / T}=\frac{m}{2(\pi)^{\frac{3}{2}}} T^{2} e^{-\left|\epsilon_{f}(N)\right| / T}
$$

We got Richardson law, Where the fermi energy $\left(\epsilon_{f}\right)$ is the work function W.
The total flow of emitted newtrons is the flux summed over the emitting surface $I=J 4 \pi r_{m}^{2}$.
(3)

$$
I=\frac{d N(t)}{d t}=\frac{2 r_{m}^{2}}{\pi^{1 / 2}} m T^{2} e^{-\left|\epsilon_{f}(N(t))\right| / T}
$$

We can see from this equation that N doesn't stay constant, therefore the system is out of equilibrium with the environment and Richardson law will be a good approximation only for a short time after the change of temperature from $T=0$ to $T>0$.
(4) The condition for Boltzmann approximation

$$
z=e^{\beta(\mu-U)}=e^{\beta\left(-|\mu|+\frac{G M m}{r}\right)} \ll 1 \Rightarrow T \ll T_{f}-\frac{G M m}{r} \Rightarrow T \ll T_{f}-\frac{G M m}{r_{0}}
$$

The last equality says that if Boltzmann approximation is valid at the surface of the core $\left(r_{0}\right)$, then it will be valid at any distance $\left(r>r_{0}\right)$ as well.

Appendix - The density of particles at radius r and $T>0$.
The total number of particles is given by the integral over the fermi distribution, with factor of 2 for spin $\frac{1}{2}$ degeneracy.

$$
N=2 \int_{r} \int_{p} \frac{d^{3} r d^{3} p}{(2 \pi)^{3}} \frac{1}{e^{\beta\left(\frac{p^{2}}{2 m}+U-\mu\right)}+1}=\frac{2}{(2 \pi)^{3}} \int_{r_{0}}^{\infty} d^{3} r \int_{-\infty}^{\infty} d^{3} p \frac{1}{\frac{1}{z} e^{\beta\left(\frac{p^{2}}{2 m}\right)}+1}
$$

Where $z=e^{\beta(\mu-U)}$ is the fugacity and $U=-\frac{m M G}{r}$.
The number of particles in a volume element at radius r

$$
n(r)=\frac{2}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d^{3} p \frac{1}{\frac{1}{z} e^{\beta\left(\frac{p^{2}}{2 m}\right)}+1}
$$

After substituting $p=\left(2 m \epsilon_{k}\right)^{\frac{1}{2}} \quad \Rightarrow \quad p^{2} d p=\frac{1}{2}(2 m)^{\frac{3}{2}}\left(\epsilon_{k}\right)^{\frac{1}{2}}$, Where ϵ_{k} is the kinetic energy, and integrating over the angular degrees of freedom we get

$$
n(r)=\frac{(2 m)^{\frac{3}{2}}}{2 \pi^{2}} \int_{0}^{\infty} d \epsilon_{k} \frac{\epsilon_{k}^{\frac{1}{2}}}{\frac{1}{z} e^{\beta \epsilon_{k}}+1}
$$

Switching to dimensionless paramater $x=\beta \epsilon \quad \Rightarrow \quad \epsilon_{k}{ }^{\frac{1}{2}} d \epsilon_{k}=\frac{1}{\beta^{\frac{3}{2}}} x^{\frac{1}{2}} d x$

$$
n(r)=\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\beta}\right)^{\frac{3}{2}} \int_{0}^{\infty} d x \frac{x^{\frac{1}{2}}}{\frac{1}{z} e^{x}+1}=\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\beta}\right)^{\frac{3}{2}} F_{\frac{3}{2}}(z)
$$

Observing the Last expression we see that $n(r \rightarrow \infty)>0$ which says there is emission of particles for $T>0$. For $T=0$ we get same result as section [1] i.e. no emmition.

