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The problem:

Consider a mesoscopic box that has dimensions L× L× `, such that `� L. In the box there are
N spin 1/2 electrons. The mass of an electron is m. In items (a-d) assume that the temperature is
T = 0. In items (1-4) the box is attached to a tank that has dimensions L× L× L, that is placed
at height D relative to the box, and you have to take into account the gravitational field g. Express
your answers using m,L, `, g, T .

(1) Describe the single particle density of states. Specify the energy range over which it is the same
as for a two dimensional box.
(2) Find the fermi energy EF assuming that it is in the range defined above. What is the maximum
number Nmax of electrons that can be accommodated without violating the 2D description?
(3) Assuming N < Nmax find the pressure P on the side walls of the box, and the force F on the
horizontal walls.
(4) Assume N = Nmax. What is the minimum height Dmin to place the tank such that all of the
electrons stay in the box?
(5) Assume N = Nmax and D > Dmin. The temperature of the system is raised a little bit. As a
result some of the particles that were in the 2D box are transferred to the tank. Estimate their
number N ′. You are allowed to use any reasonable approximation.

The solution:

(1) 3D density of states for spin 1
2 fermions is:

g3D(ε) = 2L2l · (2m)
3
2

(2π)2
ε

1
2 (1)

In 2D however, density of states is independent of energy:

g2D(ε) =
mL2

π
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The condition on the energy for 2D approximation of 3D box is that it is lower then the first excited
state of the “short” axis:
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(2) The maximal number of particles in 2D box is given by:
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For T → 0:

lim
T→0

kT ln(1 + eβµ) = µ (5)
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So the number of particles at temprature T = 0 is:

N =
L2mµ

π
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Also at T = 0 the chemical potential is defined as:

εF = µ (7)

So:
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and the maximal number of particles under this approximation is:
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(3) First we notice that at T = 0, F = E.
The single particle energy function:
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We notice that the system is at the ground state for it’s “short” axis (it is only dependent on l)
with nz = 1. The force on the horizontal walls is:
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The energy is given by:

E =

ˆ ∞
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By taking T = 0 and µ = εF we get:
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and the force on the side walls is:
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∂L
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The pressure is given by:

P =
F
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=
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(4) The condition for no transition between the box and the tank is that the chemical potential of
the unoccupied tank is higher then the chemical potential of the box:

µbox = εF =
πNmax

mL2
(16)

µtank(N
′ = 0) = mgd (17)

µbox < µtank(N
′ = 0) (18)
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(5) Now we assume T > 0, d > dmin. The number of particles in the box is given by:

N =
L2m

π
kT ln(1 + eβµ) (20)

µ = kT ln(e
πN

L2mkT − 1) = kT ln(e
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kT − 1) (21)
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By using Taylor expansion near T = 0, (Note:e−
εf
kT → 0 ; taylor expansion for ln (1− x) ∼

ln
(

1
1+x

)
∼ − ln (1 + x) ∼ −x):

µbox = εf − kTe−
εf
kT (23)

We assume low occupation in the the tank so Boltzmann approximation is valid (and also N−N ′ ≈
N)

µtank = mgd+ kT ln(
N ′

V
λ3T ) (24)

We equate the two potential:

mgd+ kT ln(
N ′

V
λ3T ) = εF − kTe−

εf
kT (25)

In order to get an analytical solution for N ′ we must neglect the exponential term in the chemical
potential of the box:

N ′ =
V

λ3T
e
εF−mgd

kT (26)

One can verify that for T → 0, d = dmin we get N ′ = 0.

3


