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The problem:
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E=0

v E=E

µ gap

Consider a gas of electrons in a metal, coupled to a reservoir at temper-
ature T and chemical potential µ. The single particle density of states
is:

g (E) = gv (E) + gc (E)

In the vicinity of the energy gap, we can use the following approximation:

gc (E) ' 2
V

(2π)2
· (2mc)

3
2 (E − Ec)

1
2

gv (E) ' 2
V

(2π)2
· (2mv)

3
2 (Ev − E)

1
2

Let us define an occupation function for the holes in the valence band:

f̃ (E − µ) ≡ 1− f (E − µ)

(a) Find the occupation functions of the electrons and the holes in the Boltzmann approximation.
(b) What is the validity of this approximation?
(c) Derive the number of electrons and holes in the conductance and valence band respectively
Nc(β, µ) and Nv(β, µ).
(d) Consider a closed system at T=0 the valence band is fully occupied and the conductance band
is empty. Now the temperature is raised to T, find the chemical potential and evaluate Nc(T ) and
Nv(T ).

The solution:

(a) Boltzmann’s approximation Ev + T << µ << Ec − T for the occupation function of the elec-
trons in the conductance band:

f(E − µ) =
1

eβ(E−µ) + 1
' e−β(E−µ) E > Ec (1)

and the holes in valence band

f̃(E − µ) =
1

e−β(E−µ) + 1
' eβ(E−µ) E < Ev (2)

(b) Semiconductors characterised by conductance and valence band levels separated by an energy
gap, therefore, the electrons that gains enough energy to cross the gap (leaving a hole in the valence
band), makes a very low density of charge carriers that can be treated using Maxwell Boltzmann’s
statistics.

(c) The number of electrons per unit volume present at temperature T in the conductance band
are:

nc(T ) =

∫ ∞
Ec

dEgc(E)
1

eβ(E−µ) + 1
(3)

1



The number of holes in the valence band per unit volume is:

nv(T ) =

∫ Ev

−∞
dEgv(E)(1− 1

eβ(E−µ) + 1
) =

∫ Ev

−∞
dEgv(E)

1

e−β(E−µ) + 1
(4)

The electrons and holes occupations are:

nc(T ) = Nc(T )eβ(µ−Ec) (5)

nv(T ) = Nv(T )eβ(Ev−µ) (6)

here we added and subtracted Ec to the exponential argument of nc allowing us to separate a
constant term from the integral. We also inserted the given single particle density of sates.

Nc(T ) =

∫ ∞
Ec

dE · 2V

(2π)2
(2mc)

3/2(E − Ec)1/2exp(−β(E − Ec)) (7)

taking the constants out and changing variable x = β(E − Ec) we stay with:

Nc(T ) =
2V

(2π)2
(2mc)

3/2 1

β3/2

∫ ∞
Ec

dx(x)1/2exp(−x) = const ·
√
π/2 (8)

The integral for the valence bend will be done in a similar way.
Inserting this result in equations (5) and (6) we get the number of charge carriers:

Nc (β, µ) = 2 · V
(mc

2π

) 3
2
T

3
2 exp

(
µ− Ec
T

)
(9)

Nv (β, µ) = 2 · V
(mv

2π

) 3
2
T

3
2 exp

(
−µ− Ev

T

)
(10)

(d) The numbers of charge carriers are not well defined till we have an evaluation of the chemical
potential, however we can use the product of equations (5) and (6) to eliminate their dependence
on the chemical potential.

NcNv = 4 · V 2(
mc

2π
)
3
2 (
mv

2π
)
3
2T 3exp(−Ec − Ev

T
) (11)

given that when T = 0 the number of charge carriers is zero we therefore deduce that fot T 6= 0
Nc = Nv = N . assuming mc = mv:

N = 2 · V (
m

2π
)
3
2T

3
2 exp(−Ec − Ev

2T
) ∝ T

3
2 exp(−Eg

2T
) (12)

We can now write equation (5) in the following way:

n(T ) = 2 · (m
2π

)
3
2T

3
2 eβ(µ−Ec) (13)

equalization of (13) and (12) we are able to evaluate the chemical potential:

µ(T ) =
Ec + Ev

2
(14)
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