## Ex1320: Bose in 2D harmonic trap

## Submitted by: Yuval Edri

## The problem:

Consider a two dimensional bose gas in a harmonic potential with energy eigenvalues $\hbar \omega\left(n_{1}+n_{2}+1\right)$ where $n_{1}, n_{2}$ are integers. [This is how the recent cold atom experiments realize condensation].
(1) Find the number of particles in excited states $N-N_{0}$, where $N_{0}$ is the the ground state occupation. Assume $k_{B} T \gg \hbar \omega$ so that summations on $n_{1}, n_{2}$ can be replaced by integrals.
(2) Find the Bose Einstein condensation temperature $T_{c}$. [Note that $N$ here is not taken to its thermodynamic limit; the transition is still fairly sharp if $N \gg 1$.]

* use the integral - $\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\frac{\pi^{2}}{6}$
(3) Show that for $T<T_{c}: \quad N_{0}=N\left[1-\left(T / T_{c}\right)^{2}\right]$.


## The solution:

(1) The partition function in the Grand- canonical ensemble is:

$$
Q=\sum_{n_{1}, n_{2}=1}^{\infty} \sum_{N_{\epsilon}}^{\infty} e^{-\beta N_{\epsilon}\left(\epsilon_{n_{1}, n_{2}}-\mu\right)}=\sum_{n_{1}, n_{2}=1}^{\infty} \frac{1}{1-e^{-\beta\left(\epsilon_{n_{1}, n_{2}}-\mu\right)}}
$$

The total occupation number is : $\langle n\rangle=\frac{1}{\beta} \frac{\partial \ln Q}{\partial \mu}$,

$$
<n>=\sum_{n_{1}, n_{2}=1}^{\infty} \frac{e^{-\beta\left(\epsilon_{n_{1}}, n_{2}-\mu\right)}}{1-e^{-\beta\left(\epsilon_{n_{1}, n_{2}}-\mu\right)}}=\sum_{n_{1}, n_{2}=1}^{\infty} \frac{1}{e^{+\beta\left(\epsilon_{n_{1}}, n_{2}-\mu\right)}-1}
$$

In order to replace the summation to integral over the energies, we should find first the number of states up to energy E , and the density of states:

The relation between $n_{1}, n_{2}$ and the energy is describe by the equation: $\epsilon=\hbar \omega\left(n_{1}+n_{2}+1\right)$ Creating a right triangle at the plane of $n_{1}, n_{2}$ with leg length of $\frac{\epsilon}{\hbar \omega}$ so:

$$
N(\epsilon)=\frac{\epsilon^{2}}{2 \hbar \omega^{2}}, g(\epsilon)=\frac{\partial N(\epsilon)}{\partial \epsilon}=\frac{\epsilon}{(\hbar \omega)^{2}}
$$

Having the density of states, we can replace the summation to an integral of $\epsilon$, we should notice that by writing it as an integral, we count only the occupation of the excited states.

$$
N_{\text {excited }}=\int_{0}^{\infty} \frac{1}{e^{+\beta(\epsilon-\mu)}-1} g(\epsilon) d \epsilon=\frac{1}{(\hbar \omega)^{2}} \int_{0}^{\infty} \frac{\epsilon}{e^{-\beta \mu} \cdot e^{\beta \epsilon}-1} d \epsilon
$$

We shall write it in the manner of polylogarithm functions, which can be defined as : $g_{\nu}(Z)=$ $\frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x}{z^{-1} e^{x}-1} d x$
Replacing $\beta \epsilon=x$ we get :

$$
N-N_{0}=N_{\text {excited }}=\frac{T^{2}}{(\hbar \omega)^{2}} \cdot g_{2}\left(e^{\beta \mu}\right) \cdot \Gamma(2)=\frac{T^{2}}{(\hbar \omega)^{2}} \cdot g_{2}\left(e^{\beta \mu}\right)
$$

(2) We are asked to find the critical temperature of the Bose -Einstein condensation, so we just have to ask on which temperature the number of particles occupied on the excited states is equal to
the total number of particles $\mathrm{N}, g_{2}\left(e^{\beta \mu}\right)$ can be taken to be $g_{2}(1)=\int_{0}^{\infty} \frac{x}{e^{x}-1} d x=\frac{\pi^{2}}{6}$ when $\mu \ll T$ which is something seems to characterize the condensation - lower $\mu$ means there is no energy cost in adding another particle to the system

$$
N_{\text {excited }}=\frac{\pi^{2} \cdot T^{2}}{6 \cdot(\hbar \omega)^{2}}=N \rightarrow T_{c}=\pi \hbar \omega \cdot \sqrt{\frac{N}{6}}
$$

(3) Beneath the critical temperature, the occupation of the ground state is equal to $N-N_{\text {excited }}$ :

$$
N_{0}=N-N_{\text {excited }}=N-\frac{\pi^{2} \cdot T^{2}}{6 \cdot(\hbar \omega)^{2}}=N-\frac{\pi^{2}}{6 \cdot(\hbar \omega)^{2}}\left(T / T_{c}\right)^{2} \cdot T_{c}^{2}=N\left(1-\left(T / T_{c}\right)^{2}\right)
$$

