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The problem1:

Consider an ideal Bose gas of particles of mass m in a uniform gravitational field of acceleration g.

(1) Show that the phenomenon of Bose-Einstein condensation in this gas sets in at a temperature
Tc given by

Tc ≈ T 0
c

[
1 +

8

9

1

ζ(3/2)

√
πmgL

kT 0
c

]
,

where L is the height of the tank and mgL� kT 0
c (T 0

c = T 0
c (g = 0)).

(2) Show that the condensation is accompanied by a discontinuity in the specific heat of the gas:

(∆CV )T=Tc ≈ −
9

8π
ζ(3/2)Nk

√
πmgL

kT 0
c

Hint: You might find use in the following expansion of the polylogarithmic functions at α = 0:

Liν(e−α) =
Γ(1− ν)

α1−ν +
∑∞

i=0

(−1)i

i
ζ(ν − i)αi.

The solution:

(1) The single-particle Hamiltonian is given by

H =
~p2

2m
+mgh ≡ ε+mgh. (1)

The average occupation of the gas (ideal Bose gas) is

〈ne〉 =
1

z−1eβmgheβε − 1
, (2)

where e denotes eigenvalues of H, β = 1/kT and z is the fugacity of the gas which is related to the
chemical potential µ through the formula z ≡ eµ/kT . The total number of particles is therefore

N ≡
∑
e

〈ne〉 =
∑
e

1

z−1eβmgheβε − 1
. (3)

Dividing the container into boxes of surface A and height dh, we replace the summation on the r.h.s
of eq. (3) by integration. In doing so, we make use of the known expression for the density of states
of free particles in 3D;

g(ε, h)dεdh = (2πA/}3)(2m)3/2ε1/2dεdh ≡ cAε1/2dεdh. (4)

We, however, note that by substituting this expression into our integrals we are inadvertently giving
a weight zero to the energy level ε+mgh = 0. It is therefore advisable to take this particular state
out of the sum in question before carrying out the integration. We thus obtain:

N = cA

∫ ∞
0

∫ L

0

ε1/2dεdh

z−1eβεeβmgh − 1
+N0 = cA(kT )3/2Γ(3/2)

∫ L

0
Li3/2(ze

−βmgh)dh+N0, (5)

1In its original version; R.K. Pathria and P.D. Beale, ”Statistical Mechanics”, Elsevier Ltd., Chapter 7; problem
7.10. (2011)
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where N0 is the number of particles in the ground state and Liν(x) are Bose-Einstein functions,
which obey

x
∂Liν(x)

∂x
= Liν−1(x). (6)

On substituting ze−βmgh = x in eq. (5) we get:

Nexited = cA(kT )3/2Γ(3/2)

∫ L

0
x
∂Li5/2(x)

∂x

∂x

∂h
dh = cA(kT )3/2Γ(3/2)

∫ ze−βmgL

z

(
− kT
mg

)
∂Li5/2(x)

∂x
dx =

= cA
(kT )5/2

mg
Γ(3/2)[Li5/2(z)− Li5/2(ze−βmgL)].

(7)

We recall that condensation appears at that temperature in which the chemical potential equals the
ground energy. For our particular case this last assertion entails: εmin = 0 ⇒ ze0 = 1 ⇒ z = 1.
Therefore for T → Tc from below, z of course equals 1 and we can legitimately use the expansion
of Li5/2(e

−βmgL) for T which obeys mgL/k � T 0
c 6 T < Tc. Doing so we obtain:

Ne ≈ cA
(kT )5/2

mg
Γ(3/2)

(
ζ(5/2)− ζ(5/2)− Γ(−3/2)

(
mgL

kT

)3/2

+ ζ(3/2)
mgL

kT

)
=

= cAL(kT )3/2Γ(3/2)

(
ζ(3/2)− 4

3

√
π

√
mgL

kT

)
.

(8)

We know2 that in the absence of gravitational field (g = 0) for T = T 0
c :

N ′e(T = T 0
c ) = N = cAL(kT 0

c )3/2Γ(3/2)ζ(3/2). (9)

On the other hand, for T = Tc, eq. (8) becomes

Ne(T = Tc) = N ≈ cA(kTc)
3/2Γ(3/2)

(
ζ(3/2)− 4

3

√
πmgL

kTc

)
. (10)

The total number of particles when g = 0 (eq. 9) equals the total number of particles when g 6= 0
(eq. 10). Therefore, combining the above results3, we obtain the desired expression:

cA(kT 0
c )3/2Γ(3/2) ≈ cA(kTc)

3/2Γ(3/2)

(
1− 4

3

1

ζ(3/2)

√
πmgL

kTc

)
⇒ Tc ≈ T 0

c

(
1− 4

3

1

ζ(3/2)

√
πmgL

kTc

)−2/3
..so that finally, recalling mgL� kT 0

c (< kTc), we get

Tc ≈ T 0
c

[
1 +

8

9

1

ζ(3/2)

√
πmgL

kT 0
c

]
. (11)

2See lecture notes.
3We could, alternatively, calculate eq. (8) at T = T 0

c < Tc; following the same reasoning concerning the equal
number of particles in both systems, we know that

N0(T = T 0
c ) = N −N ′(T = T 0

c ) ≈ cALΓ(3/2)ζ(3/2)[(kTc)
3/2 − (kT 0

c )3/2].
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(2) We consider the behavior of the total energy E as a function of T and µ, with the constraint of
fixed number of particles N ; we know that(

dE

dT

)
N,V

=

(
∂E

∂T

)
µ

+

(
∂E

∂µ

)
T

(
∂µ

∂T

)
. (12)

The first term of the r.h.s of eq. (12) is continuous at T = Tc, therefore the only singular behavior
possible is of ∂Tµ. In fact, the discontinuity is given by:

(M CV )T=Tc = C(Tc+)− C(Tc−) =

(
dE

dT

)
T=Tc

=

(
∂E

∂µ

)
T=Tc

(
∂µ

∂T

)
T=T+

c

. (13)

Using equations (2) and (4), we get an expression for the total energy:

E = cA

∫ L

0

∫ ∞
0

(ε+mgh)ε1/2dεdh

z−1eβεeβmgh − 1
. (14)

On substituting βε = a, we obtain:

E = cA(kT )5/2
∫ L

0

∫ ∞
0

a3/2dadh

z−1eaeβmgh − 1
+ cA(kT )3/2mg

∫ L

0

∫ ∞
0

ha1/2dadh

z−1eaeβmgh − 1
=

= cA(kT )5/2Γ(5/2)

∫ L

0
Li5/2(ze

−βmgh)dh+ cA(kT )3/2mgΓ(3/2)

∫ L

0
hLi3/2(ze

−βmgh)dh.

(15)

Using eq. (6), on substituting ze−βmgh = x, and integrating by parts we obtain:

cA(kT )5/2Γ(5/2)

∫ L

0
x
∂Li7/2(x)

∂x

∂x

∂h
dh = cA(kT )5/2Γ(5/2)

∫ (
− kT
mg

)
∂Li7/2(x)

∂x
dx =

=
ckT

mg
A(kT )5/2Γ(5/2)[Li7/2(z)− Li7/2(ze−βmgL)],

(16)

cA(kT )3/2mgΓ(3/2)

∫ L

0
hLi3/2(x)dh = ... =

= cA(kT )3/2mgΓ(3/2)π

[
− kT
mg

Li5/2(ze
−βmgL)L−

(
kT

mg

)2

[Li7/2(ze
−βmgL)− Li7/2(z)]

]
.

(17)

Combining the results4 and using equation (6) again we obtain the derivative ∂zE:

∂E

∂z
= cA(kT )5/2

1

z

[
5

4

√
π
kT

mgL
[Li5/2(z)− Li5/2(ze−βmgL)]− 1

2

√
πLi3/2(ze

−βmgL)L

]
. (18)

Now, we know that the total number of particles is constant, meaning that its differential with
respect to the temperature equals zero. Going back to eq. (5) we differentiate the number of
particles in order to find ∂T z. After a fair amount of algebra we obtain:(

∂z

∂T

)
T>Tc

= − 3

2T
z
Li5/2(z)− Li5/2(ze−βmgL)

Li3/2(z)− Li3/2(ze−βmgL)
. (19)

4NOTE:

Γ(5/2) =
3

4

√
π ; Γ(3/2) =

1

2

√
π ; Γ(−1/2) = −2

√
π.
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The specific heat discontinuity is therefore:

(M CV )T=Tc =

(
∂E

∂µ

)(
∂µ

∂T

)
=

(
∂E

∂z

∂z

∂µ

)(
∂µ

∂z

∂z

∂T

)
=

=
3

2
kcA

(kTc)
5/2

mg
Γ(3/2)

Li5/2(z)− Li5/2(ze−βcmgL)

Li3/2(z)− Li3/2(ze−βcmgL)
×
[
mgL

kTc
Li3/2(ze

−βcmgL)− 5

2
[Li5/2(z)− Li5/2(ze−βcmgL)]

]
.

(20)

As T → Tc from above, z → 1. Additionally by recognizing the number of excited particles (eq.
(7)), which equals the total number of particles at T = Tc, we obtain

(M CV )T=Tc =
3

2
Nk

[
mgL

kTc
Li3/2(e

−βcmgL)− 5

2
[Li5/2(1)− Li5/2(e−βcmgL)]

]
Li3/2(1)− Li3/2(e−βcmgL)

. (21)

Using the expansion of the relevant polylogarithmic functions at
mgL

kTc
≈ mgL

kT 0
c

= 0 to the lowest

order4 (under the framework of the given limit mgL� kT 0
c ) we obtain the required result:

(M CV )T=Tc ≈
3

2
Nk

[
mgL

kT 0
c

ζ(3/2)− 5

2
ζ(3/2)

mgL

kT 0
c

]
2
√
π

√
mgL

kT 0
c

= − 9

8π
ζ(3/2)Nk

√
πmgL

kT 0
c

. (22)
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