E3230: Heat Capacity of He4 system, energy gap

Submitted by: Orr Be'er

The problem:

The specific heat of $H e^{4}$ at low temperatures has the form

$$
C_{v}=A(T)+B(T) e^{-\Delta / T}
$$

This is explained by having a dispersion relation that give rise to long wavelength phonons, $\omega=c|\boldsymbol{k}|$ and short wavelength rotons $\omega(k)=\Delta+b\left(|\boldsymbol{k}|-k_{0}\right)^{2}$, where $k_{0}=1 / a$ is comparable to the mean interparticle separation.
(a) Find explcit expressions for the coefficients $A(T)$ and $B(T)$
(b) What would be the power in the T dependence of the coefficients if the system was two dimensional?

The solution:

(a) For phonons: $\varepsilon=\omega$

$$
\begin{aligned}
& k=\frac{\omega}{c} \\
& f(\omega)=\frac{1}{e^{\frac{\omega}{T}}-1} \\
& E(x, k)=\int \frac{d^{3} x d^{3} k}{(2 \pi)^{3}} \varepsilon(k) f(k) \\
& E(\omega)=\frac{4 \pi V}{(2 \pi)^{3}} \int \omega f(\omega) k^{2}(\omega) d k(\omega)=\frac{V}{2 \pi^{2}} \int_{0}^{\infty} \frac{\omega^{2}}{c^{2}} \frac{1}{e^{\frac{\omega}{T}}-1} \omega d\left(\frac{\omega}{c}\right) \\
& E(\omega)_{\text {phonons }}=\frac{V T^{4}}{2 \pi^{2} c^{3}} \int_{0}^{\infty}\left(\frac{\omega}{T}\right)^{3} \frac{1}{e^{\frac{\omega}{T}}-1} d\left(\frac{\omega}{T}\right)=\frac{V T^{4}}{2 \pi^{2} c^{3}}\left(\frac{\pi^{4}}{15}\right)
\end{aligned}
$$

The dispersion relation for rotons: $\varepsilon=\omega(k)=\Delta+b\left(|\boldsymbol{k}|-k_{0}\right)^{2}$

$$
E(k)=\frac{4 \pi V}{(2 \pi)^{3}} \int \omega(k) f(k) k^{2} d k
$$

For short wavelength rotons at low temperatures, we take $\frac{\omega}{T} \gg 1$ and so $\frac{1}{e^{\frac{\omega}{T}}-1} \approx e^{-\frac{\omega}{T}}$

$$
E(k)=\frac{V}{2 \pi^{2}} \int_{0}^{\infty}\left(\Delta+b\left(|\boldsymbol{k}|-k_{0}\right)^{2}\right) e^{-\frac{\Delta+b\left(|\boldsymbol{k}|-k_{0}\right)^{2}}{T}} k^{2} d k
$$

Denote $x=\sqrt{\frac{b}{T}}\left(|\boldsymbol{k}|-k_{0}\right)$

$$
E(T)=\frac{V}{2 \pi^{2}} \int_{0}^{\infty}\left(\Delta+T x^{2}\right) e^{-\left(\frac{\Delta}{T}+x^{2}\right)}\left(\sqrt{\frac{T}{b}} x+k_{0}\right)^{2} \sqrt{\frac{T}{b}} d x
$$

$$
E(T)=\frac{V k_{0}^{2}}{2 \pi^{2}} \sqrt{\frac{T}{b}} e^{-\frac{\Delta}{T}} \int_{0}^{\infty}\left(\frac{1}{k_{0}} \sqrt{\frac{T}{b}} x+1\right)^{2}\left(\Delta+T x^{2}\right) e^{-x^{2}} d x
$$

We are interested in low temperature and short mean interparticle separation: $\frac{T}{k_{0}^{2} b} \ll 1$ The contributing parts of the integrand are symmetric, by that the energy takes the form:

$$
\begin{aligned}
& E(T)=\frac{V k_{0}^{2}}{2 \pi^{2}} \sqrt{\frac{T}{b}} e^{-\frac{\Delta}{T}} \int_{0}^{\infty}\left(\Delta+T x^{2}\right) e^{-x^{2}} d x \\
& E(T)=\frac{V k_{0}^{2}}{2 \pi^{2}} \sqrt{\frac{T}{b}}\left(\Delta \frac{\sqrt{\pi}}{2}+T \frac{\sqrt{\pi}}{4}\right) e^{-\frac{\Delta}{T}} \\
& E_{\text {rotons }}=\frac{V k_{0}^{2}}{4 \pi^{\frac{3}{2}} \sqrt{b}}\left(\Delta \sqrt{T}+\frac{T^{\frac{3}{2}}}{2}\right) e^{-\frac{\Delta}{T}}
\end{aligned}
$$

Thus the heat capacity is:

$$
\frac{\partial}{\partial T}\left(E_{\text {phonos }}+E_{\text {rotons }}\right)=\frac{2 V \pi^{2}}{15 c^{3}} T^{3}+\frac{V k_{0}^{2}}{4 \pi^{\frac{3}{2}} \sqrt{b}}\left(\frac{3}{4} \sqrt{T}+\frac{\Delta}{\sqrt{T}}+\frac{\Delta^{2}}{T^{\frac{3}{2}}}\right) e^{-\frac{\Delta}{T}}
$$

And

$$
\begin{aligned}
& A(T)=\frac{2 V \pi^{2}}{15 c^{3}} T^{3} \\
& B(T)=\frac{V k_{0}^{2}}{4 \pi^{\frac{3}{2}}}\left(\frac{3}{4} \sqrt{T}+\frac{\Delta}{\sqrt{T}}+\frac{\Delta^{2}}{T^{\frac{3}{2}}}\right)
\end{aligned}
$$

(b) For two dimentional phonons system:

$$
\begin{aligned}
& N(\omega)_{\text {phonons }}=\frac{A}{2 \pi c^{2}} \int_{0}^{\infty} \omega d \omega \\
& E(T)_{\text {phonons }}=\frac{A T^{3}}{2 \pi c^{2}} \int_{0}^{\infty} \frac{1}{e^{\frac{\omega}{T}}-1}\left(\frac{\omega}{T}\right)^{2} d\left(\frac{\omega}{T}\right)=\frac{A T^{3}}{2 c^{2} \sqrt{\pi}}
\end{aligned}
$$

For two dimentional rotons system:

$$
E(k)_{\text {rotons }}=\frac{A}{2 \pi c^{2}} \int_{0}^{\infty} e^{-\frac{\Delta+b\left(|\boldsymbol{k}|-k_{0}\right)^{2}}{T}}\left(\Delta+b\left(|\boldsymbol{k}|-k_{0}\right)^{2}\right) k d k
$$

$E(T)_{\text {rotons }}=\frac{A k_{0}}{2 \pi c^{2}} \sqrt{\frac{T}{b}} e^{-\frac{\Delta}{T}} \int_{0}^{\infty}\left(\frac{1}{k_{0}} \sqrt{\frac{T}{b}} x+1\right)\left(\Delta+T x^{2}\right) e^{-x^{2}}=\frac{A k_{0}}{4 c^{2}} \sqrt{\frac{T}{b}}\left(\Delta \sqrt{\pi}+T \frac{\sqrt{\pi}}{2}\right) e^{-\frac{\Delta}{T}}$
Without further assumpstion, we can deduce: $A(T)_{2 D} \propto \frac{1}{T} A(T)_{3 D}$ and $B(T)_{2 D} \propto B(T)_{3 D}$

