
E3010: Heat capacity of ideal Bose gas

Submitted by: Snir Cohen

The problem:

Consider a volume V that contains N mass m bosons. The gas is in a thermal equilibrium at
temperature T .

(1) Write an explicit expression for the condensation temperature Tc .
(2) Calculate the chemical potential, the energy and the pressure in the Boltzmann approximation
T � Tc .
(3) Calculate the chemical potential, the energy and the pressure in the regime T < Tc .
(4) Calculate Cv for T < Tc .
(5) Calculate Cv for T = Tc .
(6) Calculate Cv for T � Tc .
(7) Express the ratio Cp/Cv using the polylogarithmic functions. Explain why Cp → ∞ in the
condensed phase?
(8) Find the γ in the adiabatic equation of state. Note that in general it does not equal Cp/Cv .

The solution: Note an impoved version in [ex3009].

(1) The condensation temperature:

Tc =
2π

m

(
N

ζ
(
3
2

)
V

) 2
3

, ζ

(
3

2

)
≈ 2.612 (1)

See Pathria, 2nd edition, p.161.

(2) In Boltzmann approximation T � Tc and also gν(z) ≈ z , therefore:

N

V
=

1

λ3T
z , z = eβµ , λT =

(
2π

mT

) 1
2

(2)

N

V
λ3T = eµ/T ⇒ µ = T ln

(
N

V
λ3T

)
(3)

E

V
=

3

2

T

λ3T
z =

3

2

N

V
T ⇒ E =

3

2
NT (4)

P =
2

3

(
E

V

)
=

T

λ3T
z =

N

V
T (5)

These are the classical results for an ideal gas.

(3) For T < Tc :

µ = 0 , z = 1 (6)
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E =
3

2

T

λ3T
V g5/2(1) =

3

2
ζ
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5
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2
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5
2 , ζ

(
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2

)
≈ 1.341 (7)

P =
2

3

(
E

V

)
= ζ

(
5

2

)(m
2π

) 3
2
T

5
2 (8)

(4) Heat capacity for T < Tc :

Cv =

(
∂E

∂T

)
V,N

=
15

4
ζ

(
5

2

)(m
2π

) 3
2
V T

3
2 (9)

From now on, all dervivatives with respect to T will be calculated keeping V and N constant, unless
noted otherwise.

(5) Since the expression we got for the energy in (7) is valid for T ≤ Tc , at T = Tc :

Cv =
15

4
ζ

(
5

2

)(m
2π

) 3
2
V T

3
2
c =

15

4
N
ζ
(
5
2

)
ζ
(
3
2

) ≈ 1.925N (10)

(6) For T � Tc :

E =
3

2
NT ⇒ Cv =

3

2
N (11)

(7) Let us find Cv for T > Tc :

N

V
=

1

λ3T
g3/2(z) , E =

3

2
V
T

λ3T
g5/2(z) =

3

2
NT

g5/2(z)

g3/2(z)
(12)

Cv
N

=
∂

∂T

[
3

2
T
g5/2(z)

g3/2(z)

]
(13)

Next, we need to find the derivatives of the polylogarithmic functions with respect to T :

∂

∂T
g3/2(z) =

∂

∂T

(
N

V
λ3T

)
= −3

2

N

V

(
2π

mT

) 3
2

· 1

T
= − 3

2T
g3/2(z) (14)

Using the recurrence relation (Pathria, 2nd edition, Appendix: D.10)

z
∂

∂z
gν(z) = gν−1(z) , (15)

we get:

z
∂

∂z
g3/2(z) = g1/2(z) (16)
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Dividing (14) by (16):

∂z

∂T
= − 3z

2T

g3/2(z)

g1/2(z)
,

∂

∂z
=

∂
∂z
∂T ∂T

= −2T

3z

g1/2(z)

g3/2(z)

∂

∂T
(17)

Using (15) and (17) we get:

z
∂

∂z
g5/2(z) = z

(
−2T

3z

)
g1/2(z)

g3/2(z)

∂

∂T
g5/2(z) = g3/2(z) (18)

∂

∂T
g5/2(z) = − 3

2T

g23/2(z)

g1/2(z)
(19)

Using (14) and (19) in the calculation of (13) and after some algebra we finally get:

Cv
N

=
15

4

g5/2(z)

g3/2(z)
− 9

4

g3/2(z)

g1/2(z)
(20)

We find Cp in a similar way:

Cp =

(
∂ (E + PV )

∂T

)
P,N

=

(
∂E

∂T

)
P,N

+ P

(
∂V

∂T

)
P,N

(21)

From now on all derivatives with respect to T will be calculated keeping P and N constant, meaning
we cannot use the expressions we got for the derivatives of the polylogarithmic functions and we
need to do the calculations again. From (12):

∂E

∂T
=

∂

∂T

[
3

2
NT

g5/2(z)

g3/2(z)

]
(22)

P =
T

λ3T
g5/2(z) (23)

∂

∂T
g5/2(z) =

∂

∂T

(
P
λ3T
T

)
= −5

2
P

(
2π

mT

) 3
2 1

T
· 1

T
= − 5

2T
g5/2(z) (24)

Recalling that

z
∂

∂z
g5/2(z) = g3/2(z) , (25)

we divide (24) by (25) and get:

∂z

∂T
= − 5z

2T

g5/2(z)

g3/2(z)
,

∂

∂z
=

∂
∂z
∂T ∂T

= −2T

5z

g3/2(z)

g5/2(z)

∂

∂T
(26)

Using (16) and (26) we get:

z
∂

∂z
g3/2(z) = z

(
−2T

5z

)
g3/2(z)

g5/2(z)

∂

∂T
g3/2(z) = g1/2(z) (27)

∂

∂T
g3/2(z) = − 5

2T

g5/2(z)g1/2(z)

g3/2(z)
(28)
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Using (24) and (28) in the calculation of (22) and arranging we obtain:

∂E

∂T
= N

g5/2(z)

g3/2(z)

[
−9

4
+

15

4

g5/2(z)g1/2(z)

g23/2(z)

]
(29)

From (12) we get an expression for V :

V = N
λ3T

g3/2(z)
(30)

To make the calculation of the derivative of V with respect to T easier:

∂

∂T
λ3T = −3

2

(
2π

mT

) 3
2

· 1

T
= − 3

2T
λ3T (31)

Using (28) and (31) we calculate the derivative and get:

∂V

∂T
= N

[
− 3

2T
λ3T

1

g3/2(z)
+

5

2T
λ3T
g5/2(z)g1/2(z)

g33/2(z)

]
(32)

Recalling that P = T
λ3T
g5/2(z) :

P

(
∂V

∂T

)
= N

g5/2(z)

g3/2(z)

[
−3

2
+

5

2

g5/2(z)g1/2(z)

g23/2(z)

]
(33)

Using (29) and (33) in (21) we get:

Cp
N

=
g5/2(z)

g3/2(z)

[
−15

4
+

25

4

g5/2(z)g1/2(z)

g23/2(z)

]
(34)

Finally:

Cp
Cv

=
Cp

N
Cv
N

=
5

3

g5/2(z)g1/2(z)

g23/2(z)
(35)

In condensation Cp →∞ (g1/2(z = 1) diverges). We look at the definition of Cp :

Cp ≡ T
(
∂S

∂T

)
P,N

=

(
d̄Q

dT

)
P,N

(36)

In condensed state P = const · T
5
2 , so by keeping P constant ⇒ dT = 0 . The temperature will not

change, no matter how much heat will enter the system, meaning the volume will grow.

(8) We need to find the entropy. Let us look at:

E − TS + PV ≡ µN ⇒ S

N
=
E + PV

NT
− µ

T
(37)
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For T ≤ Tc , µ = 0 and from (7) and (8):

E =
3

2

T

λ3T
V ζ

(
5

2

)
, P =

T

λ3T
ζ

(
5

2

)
(38)

Hence

S

N
=

5

2

1

λ3T

V

N
ζ

(
5

2

)
(39)

For T > Tc :

z = eµ/T ⇒ µ = T ln z (40)

E =
3

2

T

λ3T
V g5/2(z) , P =

T

λ3T
g5/2(z) (41)

Putting it all together we get:

S

N
=

5

2

V

N

g5/2(z)

λ3T
− ln z (42)

Using (12) we get a final expression:

S

N
=

5

2

g5/2(z)

g3/2(z)
− ln z (43)

A reversible adiabatic process implies that S and N are constants. For the last expression it implies
that z is constant, Therefore g3/2(z) is constant and

g3/2(z) = λ3T
N

V
= const (44)

Equation (39) implies the same. Now,

(
2π

mT

) 3
2 N

V
= const⇒ T

3
2V = const (45)

For both regions, using the expressions for P we get:

P

T
5
2

= const (46)

From (45):

T = const · 1

V 2/3
(47)

P(
V − 2

3

) 5
2

= const⇒ PV
5
3 = const (48)

Hence γ = 5
3 .
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