E3010: Heat capacity of ideal Bose gas
Submitted by: Snir Cohen

The problem:

Consider a volume V that contains N mass m bosons. The gas is in a thermal equilibrium at
temperature 7T'.

(1) Write an explicit expression for the condensation temperature Tt .

(2) Calculate the chemical potential, the energy and the pressure in the Boltzmann approximation
T>T,.

(3) Calculate the chemical potential, the energy and the pressure in the regime 7' < 7.

(4) Calculate C, for T' < T..

(5) Calculate C, for T'=T,.

(6) Calculate C, for T' > T, .

(7) Express the ratio C,/C, using the polylogarithmic functions. Explain why C, — oo in the
condensed phase?

(8) Find the v in the adiabatic equation of state. Note that in general it does not equal C,/C, .

The solution: Note an impoved version in [ex3009].

(1) The condensation temperature:
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See Pathria, 2nd edition, p.161.

(2) In Boltzmann approximation 7" > T, and also g,(z) =~ z, therefore:
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These are the classical results for an ideal gas.

(3) For T < T,:

w=0, z2=1 (6)


http://physweb.bgu.ac.il/COURSES/StatMechCohen/ExercisesPool/EXERCISES/ex_3009_sol_Y16.pdf

(4) Heat capacity for T' < T :
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From now on, all dervivatives with respect to T" will be calculated keeping V' and N constant, unless
noted otherwise.

(5) Since the expression we got for the energy in (7) is valid for T < T, at T = T¢:
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(6) For T'> T.:
E=3NT=0, =2N (11)
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(7) Let us find C, for T > T,:
N 1 3. T 3 g5/2(2)
Vv )\%93/2(2) ) 2 )\%95/2(2) 2 93/2(2) ( )
Cy 0 [3 z
Co_ 0 [T%/z( )] (13)
N 3T 2 93/2(2)
Next, we need to find the derivatives of the polylogarithmic functions with respect to T':
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Using the recurrence relation (Pathria, 2nd edition, Appendix: D.10)
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Dividing (14) by (16):
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Using (15) and (17) we get:
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Using (14) and (19) in the calculation of (13) and after some algebra we finally get:
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We find C), in a similar way:

From now on all derivatives with respect to T" will be calculated keeping P and N constant, meaning
we cannot use the expressions we got for the derivatives of the polylogarithmic functions and we
need to do the calculations again. From (12):

OE 9 [3 . 95/(2)
or — oT [QNT93/2(Z) 22
T
P = )\7395/2(2) (23)
T
d 9 (A 5 (2r\*1 1 5
8795/2(Z) =37 (PT> =—3P <mT> T = —ﬁgf)/Q(Z) (24)
Recalling that
0
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we divide (24) by (25) and get:
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Using (16) and (26) we get:
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Using (24) and (28) in the calculation of (22) and arranging we obtain:
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From (12) we get an expression for V:
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To make the calculation of the derivative of V' with respect to T easier:
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Using (28) and (31) we calculate the derivative and get:
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Recalling that P = )\1395/2(;:) :
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Using (29) and (33) in (21) we get:
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Finally:
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In condensation C), — 00 (g1/2(z = 1) diverges). We look at the definition of Cj,:
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In condensed state P = const - T’ g, so by keeping P constant = d7" = 0. The temperature will not
change, no matter how much heat will enter the system, meaning the volume will grow.

(8) We need to find the entropy. Let us look at:
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For T <T., =0 and from (7) and (8):
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ForT >T,.:
z=eT = =Tz (40)
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Putting it all together we get:
S 5V gsp(2)
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Using (12) we get a final expression:
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A reversible adiabatic process implies that S and N are constants. For the last expression it implies
that z is constant, Therefore g3 /2(2) is constant and

N
g3/2(2) = AgTV = const (44)
Equation (39) implies the same. Now,

3
2 2 N :
(mTfrZ’) V= const = T2V = const (45)

For both regions, using the expressions for P we get:

P
py = const (46)
2
From (45):
1
T = const - B (47)
P
————5 = const = PV'3 = const (48)
()
Hence v = % .



