E3010: Heat capacity of ideal Bose gas

Submitted by: Snir Cohen

The problem:

Consider a volume V that contains N mass m bosons. The gas is in a thermal equilibrium at temperature T.
(1) Write an explicit expression for the condensation temperature T_{c}.
(2) Calculate the chemical potential, the energy and the pressure in the Boltzmann approximation $T \gg T_{c}$.
(3) Calculate the chemical potential, the energy and the pressure in the regime $T<T_{c}$.
(4) Calculate C_{v} for $T<T_{c}$.
(5) Calculate C_{v} for $T=T_{c}$.
(6) Calculate C_{v} for $T \gg T_{c}$.
(7) Express the ratio C_{p} / C_{v} using the polylogarithmic functions. Explain why $C_{p} \rightarrow \infty$ in the condensed phase?
(8) Find the γ in the adiabatic equation of state. Note that in general it does not equal C_{p} / C_{v}.

The solution: Note an impoved version in [ex3009].
(1) The condensation temperature:

$$
\begin{equation*}
T_{c}=\frac{2 \pi}{m}\left(\frac{N}{\zeta\left(\frac{3}{2}\right) V}\right)^{\frac{2}{3}}, \quad \zeta\left(\frac{3}{2}\right) \approx 2.612 \tag{1}
\end{equation*}
$$

See Pathria, 2nd edition, p. 161.
(2) In Boltzmann approximation $T \gg T_{c}$ and also $g_{\nu}(z) \approx z$, therefore:

$$
\begin{align*}
& \frac{N}{V}=\frac{1}{\lambda_{T}^{3}} z, z=\mathrm{e}^{\beta \mu}, \lambda_{T}=\left(\frac{2 \pi}{m T}\right)^{\frac{1}{2}} \tag{2}\\
& \frac{N}{V} \lambda_{T}^{3}=\mathrm{e}^{\mu / T} \Rightarrow \mu=T \ln \left(\frac{N}{V} \lambda_{T}^{3}\right) \tag{3}\\
& \frac{E}{V}=\frac{3}{2} \frac{T}{\lambda_{T}^{3}} z=\frac{3}{2} \frac{N}{V} T \Rightarrow E=\frac{3}{2} N T \tag{4}\\
& P=\frac{2}{3}\left(\frac{E}{V}\right)=\frac{T}{\lambda_{T}^{3}} z=\frac{N}{V} T \tag{5}
\end{align*}
$$

These are the classical results for an ideal gas.
(3) For $T<T_{c}$:

$$
\begin{equation*}
\mu=0, z=1 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& E=\frac{3}{2} \frac{T}{\lambda_{T}^{3}} V g_{5 / 2}(1)=\frac{3}{2} \zeta\left(\frac{5}{2}\right)\left(\frac{m}{2 \pi}\right)^{\frac{3}{2}} V T^{\frac{5}{2}}, \zeta\left(\frac{5}{2}\right) \approx 1.341 \tag{7}\\
& P=\frac{2}{3}\left(\frac{E}{V}\right)=\zeta\left(\frac{5}{2}\right)\left(\frac{m}{2 \pi}\right)^{\frac{3}{2}} T^{\frac{5}{2}} \tag{8}
\end{align*}
$$

(4) Heat capacity for $T<T_{c}$:

$$
\begin{equation*}
C_{v}=\left(\frac{\partial E}{\partial T}\right)_{V, N}=\frac{15}{4} \zeta\left(\frac{5}{2}\right)\left(\frac{m}{2 \pi}\right)^{\frac{3}{2}} V T^{\frac{3}{2}} \tag{9}
\end{equation*}
$$

From now on, all dervivatives with respect to T will be calculated keeping V and N constant, unless noted otherwise.
(5) Since the expression we got for the energy in (7) is valid for $T \leq T_{c}$, at $T=T_{c}$:

$$
\begin{equation*}
C_{v}=\frac{15}{4} \zeta\left(\frac{5}{2}\right)\left(\frac{m}{2 \pi}\right)^{\frac{3}{2}} V T_{c}^{\frac{3}{2}}=\frac{15}{4} N \frac{\zeta\left(\frac{5}{2}\right)}{\zeta\left(\frac{3}{2}\right)} \approx 1.925 N \tag{10}
\end{equation*}
$$

(6) For $T \gg T_{c}$:

$$
\begin{equation*}
E=\frac{3}{2} N T \Rightarrow C_{v}=\frac{3}{2} N \tag{11}
\end{equation*}
$$

(7) Let us find C_{v} for $T>T_{c}$:

$$
\begin{align*}
& \frac{N}{V}=\frac{1}{\lambda_{T}^{3}} g_{3 / 2}(z), E=\frac{3}{2} V \frac{T}{\lambda_{T}^{3}} g_{5 / 2}(z)=\frac{3}{2} N T \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)} \tag{12}\\
& \frac{C_{v}}{N}=\frac{\partial}{\partial T}\left[\frac{3}{2} T \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}\right] \tag{13}
\end{align*}
$$

Next, we need to find the derivatives of the polylogarithmic functions with respect to T :

$$
\begin{equation*}
\frac{\partial}{\partial T} g_{3 / 2}(z)=\frac{\partial}{\partial T}\left(\frac{N}{V} \lambda_{T}^{3}\right)=-\frac{3}{2} \frac{N}{V}\left(\frac{2 \pi}{m T}\right)^{\frac{3}{2}} \cdot \frac{1}{T}=-\frac{3}{2 T} g_{3 / 2}(z) \tag{14}
\end{equation*}
$$

Using the recurrence relation (Pathria, 2nd edition, Appendix: D.10)

$$
\begin{equation*}
z \frac{\partial}{\partial z} g_{\nu}(z)=g_{\nu-1}(z) \tag{15}
\end{equation*}
$$

we get:

$$
\begin{equation*}
z \frac{\partial}{\partial z} g_{3 / 2}(z)=g_{1 / 2}(z) \tag{16}
\end{equation*}
$$

Dividing (14) by (16):

$$
\begin{equation*}
\frac{\partial z}{\partial T}=-\frac{3 z}{2 T} \frac{g_{3 / 2}(z)}{g_{1 / 2}(z)}, \quad \frac{\partial}{\partial z}=\frac{\partial}{\frac{\partial z}{\partial T} \partial T}=-\frac{2 T}{3 z} \frac{g_{1 / 2}(z)}{g_{3 / 2}(z)} \frac{\partial}{\partial T} \tag{17}
\end{equation*}
$$

Using (15) and (17) we get:

$$
\begin{align*}
& z \frac{\partial}{\partial z} g_{5 / 2}(z)=z\left(-\frac{2 T}{3 z}\right) \frac{g_{1 / 2}(z)}{g_{3 / 2}(z)} \frac{\partial}{\partial T} g_{5 / 2}(z)=g_{3 / 2}(z) \tag{18}\\
& \frac{\partial}{\partial T} g_{5 / 2}(z)=-\frac{3}{2 T} \frac{g_{3 / 2}^{2}(z)}{g_{1 / 2}(z)} \tag{19}
\end{align*}
$$

Using (14) and (19) in the calculation of (13) and after some algebra we finally get:

$$
\begin{equation*}
\frac{C_{v}}{N}=\frac{15}{4} \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}-\frac{9}{4} \frac{g_{3 / 2}(z)}{g_{1 / 2}(z)} \tag{20}
\end{equation*}
$$

We find C_{p} in a similar way:

$$
\begin{equation*}
C_{p}=\left(\frac{\partial(E+P V)}{\partial T}\right)_{P, N}=\left(\frac{\partial E}{\partial T}\right)_{P, N}+P\left(\frac{\partial V}{\partial T}\right)_{P, N} \tag{21}
\end{equation*}
$$

From now on all derivatives with respect to T will be calculated keeping P and N constant, meaning we cannot use the expressions we got for the derivatives of the polylogarithmic functions and we need to do the calculations again. From (12):

$$
\begin{align*}
& \frac{\partial E}{\partial T}=\frac{\partial}{\partial T}\left[\frac{3}{2} N T \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}\right] \tag{22}\\
& P=\frac{T}{\lambda_{T}^{3}} g_{5 / 2}(z) \tag{23}\\
& \frac{\partial}{\partial T} g_{5 / 2}(z)=\frac{\partial}{\partial T}\left(P \frac{\lambda_{T}^{3}}{T}\right)=-\frac{5}{2} P\left(\frac{2 \pi}{m T}\right)^{\frac{3}{2}} \frac{1}{T} \cdot \frac{1}{T}=-\frac{5}{2 T} g_{5 / 2}(z) \tag{24}
\end{align*}
$$

Recalling that

$$
\begin{equation*}
z \frac{\partial}{\partial z} g_{5 / 2}(z)=g_{3 / 2}(z) \tag{25}
\end{equation*}
$$

we divide (24) by (25) and get:

$$
\begin{equation*}
\frac{\partial z}{\partial T}=-\frac{5 z}{2 T} \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}, \quad \frac{\partial}{\partial z}=\frac{\partial}{\frac{\partial z}{\partial T} \partial T}=-\frac{2 T}{5 z} \frac{g_{3 / 2}(z)}{g_{5 / 2}(z)} \frac{\partial}{\partial T} \tag{26}
\end{equation*}
$$

Using (16) and (26) we get:

$$
\begin{align*}
& z \frac{\partial}{\partial z} g_{3 / 2}(z)=z\left(-\frac{2 T}{5 z}\right) \frac{g_{3 / 2}(z)}{g_{5 / 2}(z)} \frac{\partial}{\partial T} g_{3 / 2}(z)=g_{1 / 2}(z) \tag{27}\\
& \frac{\partial}{\partial T} g_{3 / 2}(z)=-\frac{5}{2 T} \frac{g_{5 / 2}(z) g_{1 / 2}(z)}{g_{3 / 2}(z)} \tag{28}
\end{align*}
$$

Using (24) and (28) in the calculation of (22) and arranging we obtain:

$$
\begin{equation*}
\frac{\partial E}{\partial T}=N \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}\left[-\frac{9}{4}+\frac{15}{4} \frac{g_{5 / 2}(z) g_{1 / 2}(z)}{g_{3 / 2}^{2}(z)}\right] \tag{29}
\end{equation*}
$$

From (12) we get an expression for V :

$$
\begin{equation*}
V=N \frac{\lambda_{T}^{3}}{g_{3 / 2}(z)} \tag{30}
\end{equation*}
$$

To make the calculation of the derivative of V with respect to T easier:

$$
\begin{equation*}
\frac{\partial}{\partial T} \lambda_{T}^{3}=-\frac{3}{2}\left(\frac{2 \pi}{m T}\right)^{\frac{3}{2}} \cdot \frac{1}{T}=-\frac{3}{2 T} \lambda_{T}^{3} \tag{31}
\end{equation*}
$$

Using (28) and (31) we calculate the derivative and get:

$$
\begin{equation*}
\frac{\partial V}{\partial T}=N\left[-\frac{3}{2 T} \lambda_{T}^{3} \frac{1}{g_{3 / 2}(z)}+\frac{5}{2 T} \lambda_{T}^{3} \frac{g_{5 / 2}(z) g_{1 / 2}(z)}{g_{3 / 2}^{3}(z)}\right] \tag{32}
\end{equation*}
$$

Recalling that $P=\frac{T}{\lambda_{T}^{3}} g_{5 / 2}(z)$:

$$
\begin{equation*}
P\left(\frac{\partial V}{\partial T}\right)=N \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}\left[-\frac{3}{2}+\frac{5}{2} \frac{g_{5 / 2}(z) g_{1 / 2}(z)}{g_{3 / 2}^{2}(z)}\right] \tag{33}
\end{equation*}
$$

Using (29) and (33) in (21) we get:

$$
\begin{equation*}
\frac{C_{p}}{N}=\frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}\left[-\frac{15}{4}+\frac{25}{4} \frac{g_{5 / 2}(z) g_{1 / 2}(z)}{g_{3 / 2}^{2}(z)}\right] \tag{34}
\end{equation*}
$$

Finally:

$$
\begin{equation*}
\frac{C_{p}}{C_{v}}=\frac{\frac{C_{p}}{N}}{\frac{C_{v}}{N}}=\frac{5}{3} \frac{g_{5 / 2}(z) g_{1 / 2}(z)}{g_{3 / 2}^{2}(z)} \tag{35}
\end{equation*}
$$

In condensation $C_{p} \rightarrow \infty\left(g_{1 / 2}(z=1)\right.$ diverges $)$. We look at the definition of C_{p} :

$$
\begin{equation*}
C_{p} \equiv T\left(\frac{\partial S}{\partial T}\right)_{P, N}=\left(\frac{d Q}{d T}\right)_{P, N} \tag{36}
\end{equation*}
$$

In condensed state $P=$ const $\cdot T^{\frac{5}{2}}$, so by keeping P constant $\Rightarrow d T=0$. The temperature will not change, no matter how much heat will enter the system, meaning the volume will grow.
(8) We need to find the entropy. Let us look at:

$$
\begin{equation*}
E-T S+P V \equiv \mu N \Rightarrow \frac{S}{N}=\frac{E+P V}{N T}-\frac{\mu}{T} \tag{37}
\end{equation*}
$$

For $T \leq T_{c}, \mu=0$ and from (7) and (8):

$$
\begin{equation*}
E=\frac{3}{2} \frac{T}{\lambda_{T}^{3}} V \zeta\left(\frac{5}{2}\right) \quad, \quad P=\frac{T}{\lambda_{T}^{3}} \zeta\left(\frac{5}{2}\right) \tag{38}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{S}{N}=\frac{5}{2} \frac{1}{\lambda_{T}^{3}} \frac{V}{N} \zeta\left(\frac{5}{2}\right) \tag{39}
\end{equation*}
$$

For $T>T_{c}$:

$$
\begin{align*}
& z=\mathrm{e}^{\mu / T} \Rightarrow \mu=T \ln z \tag{40}\\
& E=\frac{3}{2} \frac{T}{\lambda_{T}^{3}} V g_{5 / 2}(z), \quad P=\frac{T}{\lambda_{T}^{3}} g_{5 / 2}(z) \tag{41}
\end{align*}
$$

Putting it all together we get:

$$
\begin{equation*}
\frac{S}{N}=\frac{5}{2} \frac{V}{N} \frac{g_{5 / 2}(z)}{\lambda_{T}^{3}}-\ln z \tag{42}
\end{equation*}
$$

Using (12) we get a final expression:

$$
\begin{equation*}
\frac{S}{N}=\frac{5}{2} \frac{g_{5 / 2}(z)}{g_{3 / 2}(z)}-\ln z \tag{43}
\end{equation*}
$$

A reversible adiabatic process implies that S and N are constants. For the last expression it implies that z is constant, Therefore $g_{3 / 2}(z)$ is constant and

$$
\begin{equation*}
g_{3 / 2}(z)=\lambda_{T}^{3} \frac{N}{V}=\text { const } \tag{44}
\end{equation*}
$$

Equation (39) implies the same. Now,

$$
\begin{equation*}
\left(\frac{2 \pi}{m T}\right)^{\frac{3}{2}} \frac{N}{V}=\mathrm{const} \Rightarrow T^{\frac{3}{2}} V=\mathrm{const} \tag{45}
\end{equation*}
$$

For both regions, using the expressions for P we get:

$$
\begin{equation*}
\frac{P}{T^{\frac{5}{2}}}=\text { const } \tag{46}
\end{equation*}
$$

From (45):

$$
\begin{align*}
& T=\text { const } \cdot \frac{1}{V^{2 / 3}} \tag{47}\\
& \frac{P}{\left(V^{-\frac{2}{3}}\right)^{\frac{5}{2}}}=\text { const } \Rightarrow P V^{\frac{5}{3}}=\text { const } \tag{48}
\end{align*}
$$

Hence $\gamma=\frac{5}{3}$.

