
Ex3009: Entropy and heat capacity of quantum ideal gases

Submitted by: Yoav Zigdon

The problem: Consider an N particle ideal gas confined in volume V at temperature T . Find (a)
the entropy S and (b) the heat capacity C, highlighting its dependence on the temperature.
(1) Consider classical gas.
(2) Consider Fermi gas at low temperatures, using leading order Sommerfeld expansion.
(3) Consider Bose gas below the condensation temperature.
(4) Consider Bose gas above the condensation temperature.
(5) What is CBose/Cclassical at the condensation temperature?
(6) For temperatures that are above but very close to the condensation temperature, find an ap-
proximation for CV in terms of elementary functions.

Hints: In (4) use the Grand-Canonical formalism to express N and E as a function of the temper-
ature T and the fugacity z. Use the equation for N in order to deduce an expression for

(
∂z
∂T

)
N

Note that the derivative of the polylogarithmic function Lα(z) is (1/z)Lα−1(z). Final results should
be expressed in terms of (N,V, T ), but it is allowed to define and use the notations λT and εF and
Tc. In item (4) the final result can include ratios of polylogarithmic functions, with the fugacity z as
an implicit variable. Note that such ratios are all of order unity throughout the whole temperature
range provided α > 1, while functions with α < 1 are singular at z = 1.

The solution:

(1) Classical Gas:

Defining the thermal wavelength:

λT =

(
2π

mT

) 1
2

(1)

The partition function:

ZN =
1

N !

(
V

λ3T

)N
(2)

The free energy is:

F = −T ln

(
1

N !

(
V

λ3T

)N)
≈ −NT ln

(
V

λ3T

)
+ T (N ln (N)−N) (3)

We have used the Stirling approximation:

ln (N !) ≈ N ln (N)−N (4)

(a) The entropy is given by:

S = −
(
∂F

∂T

)
N,V

= N

[
ln

(
V

Nλ3T

)
+

5

2

]
(5)
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(b) The heat capacity:

CV = T

(
∂S

∂T

)
N,V

=
3

2
N (6)

(2) Fermi gas at low temperature T � εF .

In order to calculate the grand free energy, lets start by recalling the Sommerfeld expansion of
the number of particles and the energy:

N = V
1

6π2
(2m)

3
2µ

3
2

(
1 +

π2

8

(
T

µ

)2

+ ...

)
(7)

E = V
3

5

1

6π2
(2m)

3
2µ

5
2

(
1 +

5π2

8

(
T

µ

)2

+ ...

)
(8)

The pressure is related to the energy by:

P =
2

3

E

V
(9)

By extensiveness, the grand free energy is:

FG = −PV = −V 2

5

1

6π2
(2m)

3
2µ

5
2

(
1 +

5π2

8

(
T

µ

)2

+ ...

)
(10)

(a) The entropy is: (to the first order)

S = −
(
∂FG
∂T

)
µ,V

=
π2

2
V

1

6π2
(2m)

3
2µ

1
2T (11)

We would like to express the entropy using the number of particles because we are interested in a
closed system, where the number of particles is fixed. It is convenient to express the result in terms
of the Fermi energy:

µ = εF

(
1− π2

12

(
T

εF

)2

+ ...

)
(12)

In leading order the O(T 2) correction to µ(T ) can be ignored and we get the leading linear approx-
imation

S =
π2

2
N
T

εF
(13)

(b) The heat capacity (to the first order)

CV = T

(
∂S

∂T

)
N,V

=
π2

2
N
T

εF
(14)
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(3) Bose gas TC > T :

In order to find the grand free energy, we need the pressure, which is:

P =
T

λ3T
ζ

(
5

2

)
(15)

By extensiveness:

FG = −PV = −V T

λ3T
ζ

(
5

2

)
(16)

(a) The entropy:

S = −
(
∂FG
∂T

)
µ,V

=
5

2
V
(m

2π

) 3
2
T

3
2 ζ

(
5

2

)
(17)

Formally one can regard the entropy S of a Bose gas, as the sum over entropies Sr of harmonic os-
cillators that have frequencies ωr = εr − µ. Below the condensation temperature the zero-frequency
mode ω0 = 0 contributes an infinite offset S0 to the total entropy. This offset should be excluded
if the system is closed, because then the occupation of the lower orbital is not an independent
variable but is dictated by the occupations of the excited orbitals. Differently phrased, one may
say that in the regime T < Tc the Bose gas is formally equivalent to a cavity with photons/phonons.

(b) The heat capacity:

CV = T

(
∂S

∂T

)
V

=
15

4
V
(m

2π

) 3
2
T

3
2 ζ

(
5

2

)
(18)
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(4) Bose gas T > TC .

The system is closed, so in order to find the grand free energy, we use the expressions for the
number of particles and the energy of Bose gas T > TC .

N = V
(m

2π

) 3
2
T

3
2L 3

2
(z) = constant (19)

The energy is:

E =
3

2
V
(m

2π

) 3
2
T

5
2L 5

2
(z) (20)

The grand free energy, as before:

FG = −PV = −2

3
E (21)

Therefore:

FG = −V
(m

2π

) 3
2
T

5
2L 5

2
(z) (22)

(a) The entropy is:

S = −
(
∂FG
∂T

)
µ,V

=
(m

2π

) 3
2
V

[
5

2
T

3
2L 5

2
(z) + T

5
2

∂L 5
2
(z)

∂T

]
(23)

In order to calculate ∂
∂T L 5

2
(z) We use:

L′5
2

(z) =
1

z
L 3

2
(z) (24)

and (
∂z

∂T

)
µ

= − 1

T
z ln(z) (25)

And get:

∂

∂T
L 5

2
(z) = − 1

T
L 3

2
(z) ln(z) (26)

Substituting to the entropy expression:

S =

(
mT

2π

) 3
2

V L 3
2
(z)

[
5

2

L 5
2
(z)

L 3
2
(z)
− ln(z)

]
(27)

This equation is true also for T < TC since µ = 0 and hence z = 1. Identifying the prefactor in the
last equation as the number of particles,

S = N

[
5

2

L 5
2
(z)

L 3
2
(z)
− ln(z)

]
(28)

In the Boltzmann regime (z � 1) this agree with the classical gas result Eq(5).
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(b) Heat capacity:
Our system is closed, so the number of particles should stay constant. We calculate the heat capacity
using the energy. (Alternatively we could have done it using the entropy).

CV =

(
∂E

∂T

)
N,V

=
15

4
V
(m

2π

) 3
2
T

3
2L 5

2
(z) + V

3

2

(m
2π

) 3
2
T

5
2
∂

∂T
L 5

2
(z) (29)

Regarding in (19) as an implicit equation for z as a function of the free variables N and T we get
by differentiation:

3

2
T

1
2L 3

2
(z) + T

3
2L

′
3
2

(z)
∂z

∂T
= 0 (30)

Now, we know that

L′3
2

(z) =
1

z
L 1

2
(z) (31)

Hence.

1

z

(
∂z

∂T

)
N

= − 3

2T

L 3
2
(z)

L 1
2
(z)

(32)

1Lets substitute at Eq(29):

CV =
15

4
V
(m

2π

) 3
2
T

3
2L 5

2
(z) +

3

2
V
(m

2π

) 3
2
T

5
2L 3

2
(z)(− 3

2T

L 3
2
(z)

L 1
2
(z)

) (33)

CV =

(
mT

2π

) 3
2

V L 3
2
(z)

[
15

4

L 5
2
(z)

L 3
2
(z)
− 9

4

L 3
2
(z)

L 1
2
(z)

]
(34)

Expressing the heat capacity using the number of particles, We finally get:

CV = N

[
15

4

L 5
2
(z)

L 3
2
(z)
− 9

4

L 3
2
(z)

L 1
2
(z)

]
(35)

In the Boltzman approximation z � 1 and Lα(z) ≈ z, and by substitution one can see: CV = 3
2N

- in agreement with the classical heat capacity.

1Note that this derivative in constant number is different from the same derivative in constant chemical potential.
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(5) In the critical temperature:

CV = N
15ζ(52)

4ζ(32)
≈ 1.92N (36)

This result can be deduced using Eq(18) or alternatively Eq(35). In the latter equation, the right
term in the right-hand-side vanish since L 1

2
(z) diverges at z → 1. Thus,

CBose
CClassical

≈ 1.28 (37)

So it is easier to heat a classical gas by 28% than Bose quantum gas.

(6) We basically need to approximate polylogarithmic raios: L 3
2
(z)/L 1

2
(z), L 5

2
(z)/L 3

2
(z) near z = 1

(look at Eq. (35)).
For z → 1+, T → TC , µ→ 0− we shall use the formula:

Fα<1(e
βµ) =

∫ ∞
0

dx
xα−1

ex

z − 1
= Γ(α)Lα(z) ≈ 1

1− α
(−βµ)−(1−α) (38)

Setting α = 1
2 we get that for T → TC :

L 1
2
(z) ≈ 2√

π

1√
−βµ

(39)

To get an approximation for L 3
2
(z), we remember Eq.(31) and integrate:

L 3
2
(z) ≈ ζ

(
3

2

)
− 4√

π

√
− µ

TC
(40)

So:

L 3
2
(z)

L 1
2
(z)
≈ ζ

(
3

2

) √
π

2

√
−µ
TC

(41)

On top of that we need:

L 5
2
(z)

L 3
2
(z)
≈

ζ(52)

ζ
(
3
2

)
− 4√

π

√
− µ
TC

≈
ζ(52)

ζ(32)

[
1 +

4
√
πζ(32)

√
−µ
TC

]
(42)

But the latter expressions depend on µ, which we would like to relate to the small parameter:

t =
T − TC
TC

(43)

So we approximate the number of particles N ∝ T
3
2L 3

2
(z) near the condensation temperature:

T
3
2 =

(
TC(1 +

T − TC
TC

)

) 3
2

≈ T
3
2
C

(
1 +

3

2
t

)
(44)

Putting this together with Eq. (40) in the expresion for N:

N = V

(
mTC
2π

) 3
2

(1 +
3

2
t)

[
ζ

(
3

2

)
− 4√

π

√
− µ

TC

]
(45)
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After a little algebra,√
− µ

TC
≈

3
√
πζ
(
3
2

)
8

t (46)

Now we are ready to get the heat capacity:

CV = N

(
15

4

ζ(52)

ζ(32
+

(
3ζ(52)

2ζ(32)
−

27πζ(32)2

64

)
t

)
≈ N(1.92− 8.27t) (47)

Comparing with item (3) - the heat capacity is continuous.
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