Ex 2353: Tension of a stretched chain

Submitted by: Daniel Dahan

The problem:

A rubber band is modeled as a single chain of $N \gg 1$ massless non-interacting links, each of fixed length a. Consider a one-dimensional model where the links are restricted to point parallel or anti-parallel to a given axis, while the endpoints are constraint to have a distance $X=(2 n-N) a$, where n is an integer. Later you are requested to use approximations that allow to regard X as a continuous variable. Note that the body of the chain may extend beyond the length X, only its endpoints are fixed. In items (c, d) a spring is pushed between the two endpoints, such that the additional potential energy $-K X^{2}$ favors large X, and the system is released (i.e. X is free to fluctuate).
(a) Calculate the partition function $Z(X)$. Write the exact combinatorial expression. Explain how and why it is related trivially to the entropy $S(X)$.
(b) Calculate the force $f(X)$ that the chain applies on the endpoints. Use the Stirling approximation for the derivatives of the factorials.
(c) Determine the temperature T_{c} below which the $X=0$ equilibrium state becomes unstable.
(d) For $T<T_{c}$ write an equation for the stable equilibrium distance $X(T)$. Find an explicit solution by expanding $f(X)$ in leading order.

The solution:

(a) The partition function is defined:

$$
Z=\sum e^{-\beta E_{r}}
$$

If all $E_{r}=0$:

$$
Z=\# \text { states }
$$

$$
Z(X)=\frac{N!}{n!(N-n!)}=\frac{N!}{((N a+X) / 2 a)!((N a-X) / 2 a)!}
$$

The entropy:

$$
\begin{aligned}
S(X) & =\ln (\# \text { states })=\ln (Z(X)) \\
& =\ln (N!)-\ln \left(\left(\frac{N a+X}{2 a}\right)!\right)-\ln \left(\left(\frac{N a-X}{2 a}\right)!\right)
\end{aligned}
$$

(b) Realizing that the force is conjugate to X :

$$
f(X)=T \frac{\partial \ln Z}{\partial X}=-\frac{T}{2 a} \ln \left[\frac{N a+X}{N a-X}\right]=-\frac{T}{a} \tanh ^{-1}\left(\frac{X}{N a}\right)
$$

(c) The free energy of the system:

$$
\begin{aligned}
& F=E-T S=-K X^{2}-T \ln (Z(X)) \\
& \left.\frac{d^{2} F\left(T=T_{c}\right)}{d X^{2}}\right|_{X=0}=0 \\
& 0=-2 K+\frac{T_{c}}{2 a}\left(\frac{1}{N a}+\frac{1}{N a}\right) \\
& T_{c}=2 N K a^{2}
\end{aligned}
$$

(d) While $T<T_{c}$ there is a stable solution were $X \neq 0$:

$$
\begin{aligned}
& \frac{d F}{d X}=0 \\
& 0=-2 K X+\frac{T}{a} \tanh ^{-1}\left(\frac{X}{N a}\right) \\
& \frac{X}{N a}=\frac{T}{T_{c}} \tanh ^{-1}\left(\frac{X}{N a}\right)
\end{aligned}
$$

Setting a new variable $\xi=\frac{X}{N a}$ one can graphically analyse the solution.

Expanding while using $\tanh ^{-1}(\varepsilon) \approx \varepsilon+\frac{\varepsilon^{3}}{3}$ (were $\frac{X}{N a} \ll 1$):

$$
f(X) \approx \frac{T}{a}\left(\frac{X}{N a}+\frac{X^{3}}{3(N a)^{3}}\right)
$$

Finding X that is non zero:

$$
\begin{aligned}
& \frac{X}{N a}=\frac{T}{T_{c}}\left(\frac{X}{N a}+\frac{X^{3}}{3(N a)^{3}}\right) \\
& X=\sqrt{3} N a \sqrt{\frac{T_{c}}{T}-1}
\end{aligned}
$$

