Ex2230: Harmonic oscillators, Photons
Submitted by: Ira Wolfson

The problem:

Find the state equations of photon gas in 1D/2D /3D cavity within the framework of the canonical
formalism, regarding the electromagnetic modes as a collection of harmonic oscillators.

Note: additional exercises on photon gas and blackbody radiation can be found in the context of
quantum gases. Formally, photon gas is like Bose gas with chemical potential = 0. Note that
the same type of calculation appears in Debye model (”acoustic” phonons instead of ”transverse”
photons).

(1) Write the Partition function for a single photon.
(2) Find the occupation function for each w mode.

(3) Find the degeneracy function g(w).
Note: do not forget dependency on the dimension of the problem.

(4) Find the total Energy of a photon gas.
(5) Find the free Energy of a photon gas.

(6) Find an expression for the pressure of the photon gas.

The solution:

1 - Partition function

In this exercise we are supposed to treat a photon as a single harmonic oscillator ranging in fre-
quencies.
The harmonic oscillator Hamiltonian is:
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H = hw <ﬁ + 2> (1)
And we shall gauge the energy so the ground level energy contribution is zero:

H = hwi (2)
Using the canonical ensemble we find the partition function for a single ”photon” to be:
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2 - Occupation function
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Notice this is the same treatment for Bose gas, with chemical potential © = 0, and the argument is
by convention w instead of e.



3 - The degeneracy function g(w)

We want to count the number of k-modes possible for w frequency:
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4 - total energy of photon gas

n one dimension we have no degeneracy so the total energy is simply the number of oscillators
1D) I di i h d the total is simply th ber of oscillat
(or photons) multiplied by the average oscillator energy:
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Where P is the polarization number, and for photons it’s 2
So all in all we have:
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Where here p(U) is the energy density per unit area.
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Again with P = 2 we get:
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5 - Free Energy

We’ve already done most of the work needed to find the free energy function, as we’ve found g(w),
and the partition function for a single mode, so now, we just have to apply our previous knowledge:
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Taking polarization into account we get:
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Taking into account polarization number we get:
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6 - State equation

Since we know the d-volume is the conjugate quantity of the d-pressure we can directly assign:

oF
9 P?? —_

- 877 V” (22)

Where, for instance the 1 dimensional pressure is simply the force exerted by at the ends of the
infinitesimal length unit (this is similar to tension, only operating outwards and not inwards)
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The last equation yields the known relation (in cosmology) between pressure and energy
density
P=w-p (26)

where % is indeed the relation for radiation.



