Ex2215: Heat capacity of solids

Submitted by: Asaf Szulc

The problem:

Consider a piece of solid whose low laying excitations are bosonic modes that have spectral density $g(\omega)=C \omega^{\alpha-1}$ up to a cutoff frequency ω_{c}, as in the well-known Debye model (items 1-5). Similar description applies for magnetic materials (item 6). In items 7-8 assume that the solid is a "glass", whose low laying excitations are like two level entities that have a spectral density $g(\omega)$.
(1) Write a general expression for the energy $E(T)$ of the system. This expression may involve a numerical prefactor that is defined by an α dependent definite integral.
(2) Write a general expression for the heat capacity $C(T)$.
(3) Write a general expression for the variance $\operatorname{Var}(r)$ of an atom that reside inside the solid.
(4) Determine what are α and C and ω_{c} for a piece of solid that consists of N atoms that occupy a volume L^{d} in $d=1,2,3$ dimensions, assuming a dispersion relation $\omega=c|k|$, as for "phonons".
(5) Write explicitly what are $C(T)$ and $\operatorname{Var}(r)$ for $d=1,2,3$. Be careful with the evaluation of $\operatorname{Var}(r)$. In all cases consider both low temperatures $\left(T \ll \omega_{c}\right)$, and high temperatures $\left(T \gg \omega_{c}\right)$.
(6) Point out what would be α if the low laying excitations had a dispersion relation $\omega=a|k|^{2}$ as for "magnons".
(7) What is the heat capacity of a "glass" whose two level entities have excitation energies $\omega=\Delta$, where Δ has a uniform distribution with density C.
(8) What is the heat capacity of a "glass" whose two level entities have excitation energies $\omega=$ $\omega_{c} \exp (-\Delta)$, where the barrier $\Delta>0$ has a uniform distribution with density D.

The solution:

(1) Taking the bosonic occupation function with $\mu=0$ and the spectral density $g(\omega)=C \omega^{\alpha-1}$, then integrating up to a cutoff frequency ω_{c} yields:

$$
\begin{equation*}
E=\int_{0}^{\infty} g(\epsilon) \epsilon d \epsilon f(\epsilon)=\int_{0}^{\omega_{c}} g(\omega) \omega d \omega \frac{1}{e^{\omega / T}-1}=C \int_{0}^{\omega_{c}} \frac{\omega^{\alpha} d \omega}{e^{\omega / T}-1} \tag{1}
\end{equation*}
$$

(2) The heat capacity is the derivative of the energy with respect to the temperature:

$$
\begin{equation*}
C(T)=\frac{d E}{d T}=C \int_{0}^{\omega_{c}} \frac{e^{\omega / T}}{\left(e^{\omega / T}-1\right)^{2}}\left(\frac{\omega}{T}\right)^{2} \omega^{\alpha-1} d \omega \equiv C T^{\alpha} F\left(\frac{\omega_{c}}{T}\right) \tag{2}
\end{equation*}
$$

(3) The Hamiltonian of our problem is:

$$
\begin{equation*}
\mathcal{H}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}+\sum_{\{i j\}(n n)} K_{i j}\left(x_{i}-x_{j}\right)^{2} \quad \longmapsto \quad \mathcal{H}=\sum_{k} \frac{P_{k}^{2}}{2 m}+\sum_{k} \frac{1}{2} m \omega_{k}^{2} Q_{k}^{2} \tag{3}
\end{equation*}
$$

where we were lucky enough that the basis in which the Hamiltonian is diagonalized is the Discrete Fourier Transform of x_{i}, p_{i} given by:

$$
\begin{equation*}
Q_{k}=\frac{1}{\sqrt{N}} \sum_{l} e^{i k l} x_{l} ; \quad P_{k}=\frac{1}{\sqrt{N}} \sum_{l} e^{-i k l} p_{l} \tag{4}
\end{equation*}
$$

The Hamiltonian was written for a $1 D$ case, however, the generalization to other dimensions is trivial. Now, as we expressed the position as a sum of independent random variables, we can write:

$$
\begin{equation*}
\operatorname{Var}(r)=\sum_{k} \operatorname{Var}\left(Q_{k}\right)=\sum_{k} \frac{3 \omega f(\omega)}{m \omega^{2}}=\frac{3 C}{m} \int_{\frac{2 \pi c}{L}}^{\omega_{c}} \frac{\omega^{\alpha-2} d \omega}{e^{\omega / T}-1} \tag{5}
\end{equation*}
$$

where we implemented the equipartition theorem for low temperatures $(\omega f(\omega) / 2$ for each degree of freedom), then we used the given density of states for the transformation to an integral and defined minimum and maximum cutoff frequencies.
(4) Using the connection, $E=\omega=c|k|$, it is convenient to calculate the density of states in k-space. States with equal energy lie on a d-dimensional spherical shell in k -space, divided by the volume of a unit cell gives the density of states:

$$
\begin{equation*}
g(k) d k=\left(\frac{d}{2^{d}}\right) \frac{\Omega_{d} k^{d-1} d k}{\left(\frac{\pi}{L}\right)^{d}} \Longrightarrow g(\omega) d \omega=\frac{L^{d} d}{(2 \pi c)^{d}} \Omega_{d} \omega^{d-1} d \omega \tag{6}
\end{equation*}
$$

where $\Omega_{d}=\{2,2 \pi, 4 \pi\}$ for $d=\{1,2,3\}$ and the pre-factor is due to the consideration of 'd' different modes of the lattice (one for each degree of freedom) and only positive values of ' k '.

And now to business, first we will plug eqn.(6) in the number of states equation. For a d-dimensional crystal with N atoms there are $N d$ normal modes so we can write:

$$
\begin{equation*}
N d=\int_{0}^{\omega_{c}} g(\omega) d \omega=\frac{\Omega_{d} d}{(2 \pi c)^{d}} L^{d} \int_{0}^{\omega_{c}} \omega^{d-1} d \omega \tag{7}
\end{equation*}
$$

second, in the equation for the heat capacity to get:

$$
\begin{equation*}
C(T)=\frac{d}{d T}\left(\int_{0}^{\omega_{c}} g(\omega) \omega d \omega \frac{1}{e^{\omega / T}-1}\right)=\frac{\Omega_{d} d}{(2 \pi c)^{d}} L^{d} \int_{0}^{\omega_{c}} \frac{e^{\omega / T}}{\left(e^{\omega / T}-1\right)^{2}}\left(\frac{\omega}{T}\right)^{2} \omega^{d-1} d \omega \tag{8}
\end{equation*}
$$

Solving eqn.(7) and comparing eqn.(8) to eqn.(2) leads to the final result:

$$
\begin{equation*}
\omega_{c}=\frac{2 \pi c}{L}\left(\frac{N d}{\Omega_{d}}\right)^{1 / d} ; \quad C=\frac{\Omega_{d} d}{(2 \pi c)^{d}} L^{d}=\frac{N d^{2}}{\omega_{c}^{d}} ; \quad \alpha=d \tag{9}
\end{equation*}
$$

(5) In this section, throughout our entire calculation for the low temperature limit, $T \ll \omega_{c}$, we take $x_{c}=\omega_{c} / T \rightarrow \infty$ and integrating $F\left(x_{c}\right)$ by parts. For the high temperature limit, $T \gg \omega_{c}$, we take $x \rightarrow 0 \Rightarrow e^{x} \approx 1+x$ and we keep only the lowest order in x. Thus we get:

For $1 D\left(\alpha=1, \Omega_{\alpha}=2\right)$:

$$
\begin{align*}
& C(T)=\frac{N T}{\omega_{c}} F\left(x_{c}\right)= \begin{cases}\frac{\pi}{3} \frac{L T}{c} & T \ll \omega_{c} \\
N & T \gg \omega_{c}\end{cases} \tag{10}\\
& \operatorname{Var}(r)=\frac{3 L}{m \pi c} \int_{\frac{2 \pi c}{L}}^{\omega_{c}} \frac{d \omega}{\omega\left(e^{\omega / T}-1\right)}= \begin{cases}0 & T \ll \omega_{c} \\
\frac{3}{2 \pi^{2}}\left(\frac{T}{m c^{2}}\right) L^{2} & T \gg \omega_{c}\end{cases} \tag{11}
\end{align*}
$$

For $2 D\left(\alpha=2, \Omega_{\alpha}=2 \pi\right)$:

$$
\begin{align*}
& C(T)=\frac{4 N}{x_{c}^{2}} F\left(x_{c}\right)= \begin{cases}7.212 \cdot \frac{L^{2} T^{2}}{\pi c^{2}} & T \ll \omega_{c} \\
2 N & T \gg \omega_{c}\end{cases} \tag{12}\\
& \operatorname{Var}(r)=\frac{3 L^{2}}{m \pi c^{2}} \int_{\frac{2 \pi c}{L}}^{\omega_{c}} \frac{d \omega}{\left(e^{\omega / T}-1\right)}= \begin{cases}0 & T \ll \omega_{c} \\
\frac{3 \ln (N)}{2 \pi}\left(\frac{T}{m c^{2}}\right) L^{2} & T \gg \omega_{c}\end{cases} \tag{13}
\end{align*}
$$

For $3 D\left(\alpha=3, \Omega_{\alpha}=4 \pi\right)$:

$$
\begin{align*}
& C(T)=\frac{9 N}{x_{c}^{3}} F\left(x_{c}\right)=\left\{\begin{array}{lll}
\frac{2 \pi^{2} L^{3}}{5 c^{3}} T^{3} & T \ll \omega_{c} & \left(\text { Debye T}{ }^{3}\right. \text { law) } \\
3 N & T \gg \omega_{c} & \text { (Dulong Petit law) }
\end{array}\right. \tag{14}\\
& \operatorname{Var}(r)=\frac{9 L^{3}}{2 m \pi^{2} c^{3}} \int_{\frac{2 \pi c}{L}}^{\omega_{c}} \frac{\omega d \omega}{\left(e^{\omega / T}-1\right)}= \begin{cases}0 & T \ll \omega_{c} \\
\frac{9}{\pi}\left(\frac{3 N}{4 \pi}\right)^{\frac{1}{3}}\left(\frac{T}{m c^{2}}\right) L^{2} & T \gg \omega_{c}\end{cases} \tag{15}
\end{align*}
$$

(6) The calculation of the new density of states is similar to the previous problem. Therefore, we continue by plugging the new dispersion relation $\omega=a|k|^{2}$ into eqn.(6) and get:

$$
\begin{equation*}
g(\omega) d \omega=\Omega_{d} L^{d} \frac{m d}{(2 \pi)^{d}}\left(\frac{\omega}{a}\right)^{d / 2-1} \frac{d \omega}{2 m a} \quad \Longrightarrow \quad g(\omega)=C \omega^{d / 2-1} \equiv C \omega^{\alpha-1} \tag{16}
\end{equation*}
$$

hence $\alpha=d / 2$.
(7) The partition function for a two level system is:

$$
\begin{equation*}
Z(\beta)=1+e^{-\beta \omega} \tag{17}
\end{equation*}
$$

leading to the same calculation but with " + " instead of "-" sign. Plugging in $g(\Delta)=C$ to get:

$$
\begin{equation*}
C(T)=\int_{0}^{\infty} \frac{g(\Delta) e^{\Delta / T}}{\left(e^{\Delta / T}+1\right)^{2}}\left(\frac{\Delta}{T}\right)^{2} d \Delta=-C T \int_{0}^{\infty} \frac{x^{2} e^{x}}{\left(e^{x}+1\right)^{2}} d x=\frac{\pi^{2}}{6} C T \tag{18}
\end{equation*}
$$

where we defined $x=-\Delta / T$ and integrated by parts.
(8) Here we use the given connection, $\omega=\omega_{c} e^{-\Delta}$ and then introduce another change of variables, $x=-\omega_{c} e^{-\Delta} / T$, to get:

$$
C(T)=\int_{0}^{\infty}\left(\frac{\omega_{c} e^{-\Delta}}{T}\right)^{2} \frac{g(\Delta) e^{-\frac{\omega_{c}}{T} e^{-\Delta}}}{\left(e^{-\frac{\omega_{c}}{T} e^{-\Delta}}+1\right)^{2}} d \Delta=\int_{0}^{-x_{c}} \frac{D x e^{x} d x}{\left(e^{x}+1\right)^{2}}=\left\{\begin{array}{cl}
\ln (2) D & T \ll \omega_{c} \tag{19}\\
\frac{\omega_{c}^{2}}{8 T^{2}} D & T \gg \omega_{c}
\end{array}\right.
$$

