E2060: Particle on a ring with electric field

Submitted by: Rotem Kupfer

The problem:

Particle of mass m and charge e is free to move on a ring of radius R. The ring is located in the $x-y$ plan. The position of the particle on the ring is $x=R \cos (\theta)$ and $y=R \sin (\theta)$. There is an electric field E in the x direction. The temperature is T.
(1) Write the Hamiltonian $H(\theta, p)$ of the particle.
(2) Calculate the partition function $Z(\beta, \mathcal{E})$.
(3) Write an expression for the probability distribution $\rho(\theta)$.
(4) Calculate the mean position $\langle x\rangle$ and $\langle y\rangle$.
(5) Write an expression for the probability distribution $\rho(x)$. Attach a schematic plot.
(6) Write an expression for the polarization. Expand it up to first order in E, and determine the susceptibility.

Use the following identities:

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (z \cos (\theta)) d \theta=I_{0}(z) \\
& I_{0}^{\prime}(z)=I_{1}(z) \\
& I_{0}(z)=1+\left(\frac{1}{4}\right) z^{2}+\left(\frac{1}{64}\right) z^{4+\ldots}
\end{aligned}
$$

The solution:

(1) The Hamiltonian is:

$$
\mathcal{H}=\frac{P_{\theta}^{2}}{2 m R^{2}}-e E R \cos \theta
$$

(2) The partition function is therefor:

$$
Z=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{\beta P_{\theta}^{2}}{2 m R^{2}}} d P_{\theta} \int_{0}^{2 \pi} \mathrm{e}^{\beta e E R \cos \theta} d \theta=\sqrt{\frac{m R^{2}}{2 \pi \beta}} \frac{2 \pi}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\beta e E R \cos \theta} d \theta=\sqrt{\frac{m R^{2}}{2 \pi \beta}} 2 \pi I_{0}(\beta e E R)
$$

(3) By definition:

$$
\rho(\theta)=\int_{-\infty}^{\infty} \rho\left(\theta, P_{\theta}\right) d P_{\theta}=\int_{-\infty}^{\infty} \frac{\mathrm{e}^{-\frac{\beta P_{\theta}^{2}}{2 m R^{2}}+\beta e E R \cos \theta}}{Z} d P_{\theta}=\frac{\sqrt{\frac{m R^{2}}{2 \pi \beta}} \mathrm{e}^{\beta e E R \cos \theta}}{\sqrt{\frac{m R^{2}}{2 \pi \beta}} 2 \pi I_{0}(\beta e E R)}=\frac{\mathrm{e}^{\beta e E R \cos \theta}}{2 \pi I_{0}(\beta e E R)}
$$

(4) The mean $\langle x\rangle$ is given by:

$$
\begin{aligned}
& <x>=<R \cos \theta>=\int_{0}^{2 \pi} R \cos \theta \rho(\theta) d \theta=\int_{0}^{2 \pi} R \cos \theta \frac{\mathrm{e}^{\beta e E R \cos \theta}}{2 \pi I_{0}(\beta e E R)} d \theta=\ldots \\
& \ldots=\frac{R}{2 \pi I_{0}(\beta e E R)} \int_{0}^{2 \pi} \cos \theta \mathrm{e}^{\beta e E R \cos \theta} d \theta=\frac{R I_{1}(\beta e E R)}{I_{0}(\beta e E R)}
\end{aligned}
$$

The mean $\langle y\rangle$ is given similarly:

$$
<y>=<R \sin \theta>=\int_{0}^{2 \pi} R \sin \theta \rho(\theta) d \theta=\int_{0}^{2 \pi} R \sin \theta \frac{\mathrm{e}^{\beta e E R \cos \theta}}{2 \pi I_{0}(\beta e E R)} d \theta=0
$$

(5) The probability distribution $\rho(x)$ is given by a simple substitution of random variable. It is important to notice that $\theta(x)$ is not injective so there is a factor of 2 :

$$
\begin{aligned}
& x=R \cos \theta \rightarrow \theta=\arccos \frac{x}{R} \\
& \rho(x)=2 \rho(\theta(x))\left|\frac{d \theta}{d x}\right|=\frac{\mathrm{e}^{\beta e E x}}{\pi I_{0}(\beta e E R)} \frac{1}{\sqrt{R^{2}-x^{2}}}
\end{aligned}
$$

(6) The polarization is the logarithmic derivation of the partition function by the external electric field:

$$
P(E)=\frac{1}{\beta} \frac{\partial \ln Z}{\partial E}=\frac{1}{\beta} \frac{\partial}{\partial E} \ln \left(\sqrt{\frac{m R^{2}}{2 \pi \beta}} 2 \pi I_{0}(\beta e E R)\right)=\frac{1}{\beta} \frac{\left.\partial \ln 2 \pi I_{0}(\beta e E R)\right)}{\partial E}=e R \frac{I_{0}^{\prime}(\beta e E R)}{I_{0}(\beta e E R)}
$$

By expanding to a Taylor series near $E=0$:

$$
P(E)=e R \frac{\frac{\beta e E R}{2}+o\left(E^{3}\right)}{1+\frac{(\beta e E R)^{2}}{4}+o\left(E^{4}\right)}
$$

The linear susceptibility is therefor:

$$
\chi^{(1)}=\frac{\beta e^{2} R^{2}}{2}
$$

