Ex2065: Classical gas with a general dispersion relation
Submitted by: Konstantin Yavilberg

The problem:

Consider a gas of non-interacting particles in a d dimensional box, with kinetic energy of the form
E, = c|p|®, and temperature T.

(a) Find the partition function for N particles in the box.

(b) Define v =1+ 5 and using (a) show that the energy is E = %

(c) Show that the entropy is S = ijl In (PV7) 4+ f(N), and prove that in an adiabatic process
PV?" = const.

(d) Show that the heat capacity ratio is Cp/Cy = 7.

The solution:

(a) The partition function for a single particle, which is a simple phase space integration over
Boltzman’s factor:
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where we used generalized spherical coordinates to represent the integral, which is in the form
of a Gamma function:
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4 is the solid angle in the appropriate dimension (e.g. Q9 = 27 or Q3 = 47).

Because the gas is classical, the full partition function is just: Z = (Z]i,)!N.
(b) The average energy:
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using the definition of ~, the above fraction becomes:
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(c) By equating the two definitions of the Helmholtz function, we can find the entropy:
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using (4), we get the expression:
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all of the constants and N-dependence was inserted into f(NV).
Using the fact that any classical non-interacting gas is obeyed by the ideal gas equation
B = N/PV, we rewrite (6):
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and again by implicitly inserting into f(N), we get the desired result:
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In the adiabatic process d@Q = 0, which implies S = const. Thus, from (8) we get the condition:
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The general form of heat capacity is:
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we keep the pressure or volume constant for Cp and Cy accordingly:
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in both cases we used the ideal gas equation, in performing the derivative. Finally, we obatin
the relation:
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