Ex2065: Classical gas with a general dispersion relation

Submitted by: Konstantin Yavilberg

The problem:

Consider a gas of non-interacting particles in a d dimensional box, with kinetic energy of the form $E_{p}=c|p|^{s}$, and temperature T.
(a) Find the partition function for N particles in the box.
(b) Define $\gamma=1+\frac{s}{d}$ and using (a) show that the energy is $E=\frac{N T}{\gamma-1}$.
(c) Show that the entropy is $S=\frac{N}{\gamma-1} \ln \left(P V^{\gamma}\right)+f(N)$, and prove that in an adiabatic process $P V^{\gamma}=$ const.
(d) Show that the heat capacity ratio is $C_{P} / C_{V}=\gamma$.

The solution:

(a) The partition function for a single particle, which is a simple phase space integration over Boltzman's factor:

$$
\begin{equation*}
Z_{1}=\frac{1}{(2 \pi)^{d}} \int d^{d} x \int d^{d} p e^{-\beta c|p|^{s}}=\frac{V}{(2 \pi)^{d}} \int d \Omega_{d} \int_{0}^{\infty} p^{d-1} e^{-\beta c p^{s}} d p \tag{1}
\end{equation*}
$$

where we used generalized spherical coordinates to represent the integral, which is in the form of a Gamma function:

$$
\begin{equation*}
Z_{1}=\frac{V}{(2 \pi)^{d}} \Omega_{d} \frac{(c \beta)^{-d / s}}{s} \Gamma\left(\frac{d}{s}\right) \tag{2}
\end{equation*}
$$

Ω_{d} is the solid angle in the appropriate dimension (e.g. $\Omega_{2}=2 \pi$ or $\Omega_{3}=4 \pi$).
Because the gas is classical, the full partition function is just: $Z=\frac{\left(Z_{1}\right)^{N}}{N!}$.
(b) The average energy:

$$
\begin{equation*}
E=-\frac{\partial \ln Z}{\partial \beta}=-N \frac{\partial \ln Z_{1}}{\partial \beta}+\frac{\partial \ln N!}{\partial \beta}=\frac{N}{\beta} \frac{d}{s} \tag{3}
\end{equation*}
$$

using the definition of γ, the above fraction becomes:

$$
\begin{equation*}
E=N T \frac{d}{d(\gamma-1)}=\frac{N T}{\gamma-1} \tag{4}
\end{equation*}
$$

(c) By equating the two definitions of the Helmholtz function, we can find the entropy:

$$
\begin{equation*}
F=E-\frac{S}{\beta}=-\frac{\ln Z}{\beta} \quad \Longrightarrow \quad S=\beta E+\ln Z \tag{5}
\end{equation*}
$$

using (4), we get the expression:

$$
\begin{equation*}
S=\frac{N}{\gamma-1}+N \ln Z_{1}-\ln N!=N \ln \left(V \beta^{-d / s}\right)+f(N) \tag{6}
\end{equation*}
$$

all of the constants and N-dependence was inserted into $f(N)$.
Using the fact that any classical non-interacting gas is obeyed by the ideal gas equation $\beta=N / P V$, we rewrite (6):

$$
\begin{equation*}
S=N \ln \left(V\left(\frac{P V}{N}\right)^{\frac{1}{\gamma-1}}\right)+f(N)=N \ln \left(\left(\frac{P V^{\gamma}}{N}\right)^{\frac{1}{\gamma-1}}\right)+f(N) \tag{7}
\end{equation*}
$$

and again by implicitly inserting into $f(N)$, we get the desired result:

$$
\begin{equation*}
S=\frac{N}{\gamma-1} \ln \left(P V^{\gamma}\right)+f(N) \tag{8}
\end{equation*}
$$

In the adiabatic process $đ Q=0$, which implies $S=$ const. Thus, from (8) we get the condition:

$$
\begin{equation*}
S=\frac{N}{\gamma-1} \ln \left(P V^{\gamma}\right)=\text { const. } \quad \Longrightarrow \quad P V^{\gamma}=\text { const. } \tag{9}
\end{equation*}
$$

(d) The general form of heat capacity is:

$$
\begin{equation*}
C=\frac{d Q}{d T}=T \frac{d S}{d T} \tag{10}
\end{equation*}
$$

we keep the pressure or volume constant for C_{P} and C_{V} accordingly:

$$
\begin{align*}
& C_{P}=\left.T \frac{d S}{d T}\right|_{P=\mathrm{const}}=\frac{N T}{\gamma-1} \frac{d \ln \left(P V^{\gamma}\right)}{d T}=\gamma \frac{N T}{\gamma-1} \frac{d \ln V}{d T}=N \frac{\gamma}{\gamma-1} \tag{11}\\
& C_{V}=\left.T \frac{d S}{d T}\right|_{V=\mathrm{const}}=\frac{N T}{\gamma-1} \frac{d \ln P}{d T}=\frac{N}{\gamma-1} \tag{12}
\end{align*}
$$

in both cases we used the ideal gas equation, in performing the derivative. Finally, we obatin the relation:

$$
\begin{equation*}
\frac{C_{P}}{C_{V}}=\gamma \tag{13}
\end{equation*}
$$

