Ex2046: Gas in a centrifuge

Submitted by: Isaac Weinberg

The problem:

A cylinder of of radius R rotates about its axis with a constant angular velocity Ω. It contains an ideal classical gas of N particles at temperature T.
Note that the Hamiltonian in the rotating frame is $H^{\prime}(r, p ; \Omega)=H(r, p)-\Omega L(r, p)$ where $L(r, p)$ is the angular momentum.
It is conceptually useful to realize that formally the Hamiltonian is the same as that of a charged particle in a magnetic field ("Coriolis force") plus centrifugal potential $V(r)$. Explain how this formal equivalence can be used in order to make a shortcut in the above calculation.
(1) Find the density distribution as a function of the radial distance from the axis.
(2) Write what is the pressure on the walls.

The solution:

First, we would like to rearrange the Hamiltonian in order to simplify the partition function calculation:

$$
\begin{equation*}
H=\frac{p^{2}}{2 \mathbf{m}}-\Omega \cdot L=\frac{p^{2}}{2 \mathbf{m}}-\Omega \cdot r \times p=\frac{p^{2}}{2 \mathbf{m}}-p \cdot \Omega \times r=\frac{(p-\mathbf{m} \Omega \times r)^{2}}{2 \mathbf{m}}-\frac{1}{2} \mathbf{m}(\Omega \times r)^{2} \tag{1}
\end{equation*}
$$

One can see that the term $\mathbf{m} \Omega \times r \rightleftharpoons e A(r)$ and that $V(r)=-\frac{1}{2} \mathbf{m}(\Omega \times r)^{2}$ which corresponds to a charged particle in electromagnetic field:

$$
H=\frac{1}{2 \mathbf{m}}(p-e A(r))^{2}+V(r)
$$

(1) In order to find the density distribution we will find the partition function of a very thin $\mathrm{d} r$ layer of gas distant r from the center of the cylinder:

$$
\begin{equation*}
Z_{1}(r)=\int \frac{\mathrm{d} r \mathrm{~d} p}{(2 \pi)^{3}} \mathrm{e}^{-\beta \mathcal{H}}=\int \frac{\mathrm{d} r \mathrm{~d} p}{(2 \pi)^{3}} \mathrm{e}^{-\beta\left[\frac{1}{2 \mathbf{m}}(p-\mathbf{m} \Omega \times r)^{2}-\frac{1}{2} \mathbf{m}(\Omega \times r)^{2}\right]} \tag{2}
\end{equation*}
$$

We will change the variable $p^{\prime}=p-\boldsymbol{m} \Omega \times r$ and since we are working in a cylindrical coordinates the integral of equation (2) will become:

$$
\begin{align*}
& Z_{1}(r)=\int \frac{\mathrm{d} p^{\prime}}{(2 \pi)^{3}} \mathrm{e}^{-\beta \frac{1}{2 m} p^{\prime 2}} \int_{z=0}^{z=L} \mathrm{~d} z \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta r \mathrm{~d} r \mathrm{e}^{\frac{1}{2} \beta \mathbf{m}(\Omega r)^{2}}=\left(\frac{1}{\lambda_{T}}\right)^{3} V \mathrm{e}^{\frac{1}{2} \beta \mathbf{m}(\Omega r)^{2}} \tag{3}\\
& Z_{N}(r)=\frac{Z_{1}^{N}}{N!} \text { N equal the number of atoms in the thin layer } \tag{4}
\end{align*}
$$

Because each thin layer is in contact with the layer around it after equilibrium is archived all the layers have the same chemical potential which we'll calculate next:

$$
\mu=\frac{\partial F}{\partial N}=\frac{1}{\beta}\left(-\ln \left(Z_{1}(r)\right)+\ln (N(r))\right)=\frac{1}{\beta} \ln \left(\lambda_{T}^{3} \frac{N(r)}{V} \mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega r)^{2}}\right)=\frac{1}{\beta} \ln \left(\left(\lambda_{T}^{3} n(r)\right)-\frac{1}{2} \mathbf{m}(\Omega r)^{2}\right.
$$

If we equate $\mu(r)=\mu(0)$ we can find the distribution of the density:

$$
\begin{align*}
\mu(r) & =\mu(0) \\
\ln \left(\lambda_{T}^{3} n(r) \mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega r)^{2}}\right) & =\ln \left(\lambda_{T}^{3} n(0) \mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega \cdot 0)^{2}}\right) \\
n(r) & =n(0) \mathrm{e}^{\frac{1}{2} \beta \mathbf{m}(\Omega r)^{2}} \tag{6}
\end{align*}
$$

(2) To find the pressure on the walls of the cylinder we will calculate the force on the walls from the partition function of the entire cylinder, not just a thin layer as we did in the previous section.

$$
\begin{equation*}
Z_{1}=\int \frac{\mathrm{d} p^{\prime}}{(2 \pi)^{3}} \mathrm{e}^{-\beta \frac{1}{2 m} p^{\prime 2}} \int_{z=0}^{z=L} \mathrm{~d} z \int_{\theta=0}^{\theta=2 \pi} \mathrm{~d} \theta \int_{r=0}^{r=R} \mathrm{~d} r r \mathrm{e}^{\frac{1}{2} \beta \mathbf{m}(\Omega r)^{2}}=\left(\frac{1}{\lambda_{T}}\right)^{3} \frac{2 \pi L}{\mathbf{m} \Omega^{2} \beta}\left(\mathrm{e}^{\frac{1}{2} \beta \mathbf{m}(\Omega R)^{2}}-1\right) \tag{7}
\end{equation*}
$$

$Z_{N}(r)=\frac{Z_{1}^{N}}{N!}$ now N equal the number of atoms in the cylinder

$$
\langle F\rangle_{R}=\frac{1}{\beta} \frac{\partial \ln \left(Z_{N}\right)}{\partial R}=N \mathbf{m} \Omega^{2} R \frac{1}{1-\mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega R)^{2}}}
$$

$$
\begin{equation*}
P=\frac{F}{A}=\frac{N \mathbf{m} \Omega^{2} R}{2 \pi R L} \frac{1}{1-\mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega R)^{2}}} \tag{10}
\end{equation*}
$$

We will replace N with $n V=n \pi R^{2} L$ and get:

$$
\begin{equation*}
P=\frac{n \pi R^{2} L \mathbf{m} \Omega^{2} R}{2 \pi R L} \frac{1}{1-\mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega R)^{2}}}=n \frac{\mathbf{m} R^{2}}{2} \Omega^{2} \frac{1}{1-\mathrm{e}^{-\frac{1}{2} \beta \mathbf{m}(\Omega R)^{2}}} \tag{11}
\end{equation*}
$$

If $\Omega \rightarrow 0$ we can expand the exponent $\mathrm{e}^{x}=1+x \ldots$ and get:

$$
\begin{equation*}
P \stackrel{\Omega \rightarrow 0}{\approx} n \frac{\mathbf{m} R^{2}}{2} \Omega^{2} \frac{1}{1-\left(1-\frac{1}{2} \beta \mathbf{m}(\Omega R)^{2}\right)}=\frac{n}{\beta} \tag{12}
\end{equation*}
$$

Which corresponds to the equation of state of an ideal gas.
On the Other hand if $\Omega \rightarrow \infty$ the force on the walls equals the Centripetal force exerted by the wall on all the atoms:

$$
\begin{equation*}
\langle F\rangle_{R} \stackrel{\Omega \rightarrow \infty}{\approx}_{\approx} \mathbf{m} \Omega^{2} R \tag{13}
\end{equation*}
$$

