
Ex2340: Boltzmann gas confined in a capacitor

Submitted by: Tomer Ygael

The problem:

An ideal gas of N spin-less particles of mass m is inserted in between two parallel surfaces. To make
sure that the particles won’t ”escape” a harmonic two dimensional potential is created in such a
way that:

V (x, y, z) =

{
1
2mω

2(x2 + y2) z1 < z < z2
∞ else

Let us denote L = z1 + z2
This problem consist of two independent parts. Express your answers using N,m,L, ω, e, E , T

(I) (a) Calculate the classical partition function

Z1 =

∫
d3pd3x

(2π)3
e−βH ; ZN = ZN1 (1)

find the heat capacity C(T ) of the gas.

(b) Calculate the quantum partition function in the limit where L is large. Find what L is
large enough.

Guidance: What are the stationary states |φ〉 of a single particle in a potential V?
Calculate:

Z1 ≡
∑
r

e−βEr ; ZN ≈
1

N !
ZN1 (2)

To calculate Z1 use factorization of the sum.

(c) Find the heat capacity C(T ) of the gas using the partition function you found in article
(b). Check the behavior of the heat capacity in high temperature - define what is high
temperature and see if you get the classical result from article (a).

(d) Calculate the forces F1, F2 that the particles apply on the upper and lower walls of the
”box”

(II) We now add an electrical field ~E = E ẑ, assume that the particle are charged with e.

(e) Write down the one particle Hamiltonian and calculate the classical partition function.
Z1(β; z1, z2, E)

(f) Calculate the forces F1, F2 that are acting on the upper and lower walls of the ”box”.
What is the resultant force working on the system?

(g) Find the polarization P̃ of the electron gas as a function of the electric field (The polar-
ization P̃ is defined by the formula d̄W = P̃dE)

(h) Write down P(E) = 1
L P̃ for a weak E . Define what is a weak field. Bring the expression

you receive to the following form P(E) = χE +O(E2) and find what is the susceptibility
χ.
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The Solution:

(a) The problem Hamiltonian is as follows:

H = (
p2x
2m

+
1

2
mω2x2) + (

p2y
2m

+
1

2
mω2y2) +

p2z
2m

(3)

All that is left for us to do is input the Hamiltonian into the Boltzmann exponent and solve
a Gaussian integral which has a known solution.

Z1 =

∫
d3pd3x

(2π)3
e−β((

p2x
2m

+ 1
2
mω2x2)+(

p2y
2m

+ 1
2
mω2y2)+

p2z
2m

) (4)

=

∞∫∫
−∞

dpxdx

2π
e−β(

p2x
2m

+ 1
2
mω2x2)

∞∫∫
−∞

dpydy

2π
e−β(

p2y
2m

+ 1
2
mω2y2)

∞∫
−∞

z2∫
z1

dpzdz

2π
e−β

p2z
2m (5)

(6)

Due to symmetry in px, py, pz we can say that the solution over the kinetic parts of the
Hamiltonian is the same as the cube of one of those integrals. The same can be done with the
potential part of the Hamiltonian (excluding the z component), giving us

Z1 =

 ∞∫
−∞

dp

2π
e−β

p2

2m

3 ∞∫
−∞

dx

2π
e−β

1
2
mω2x2

2 z2∫
z1

dz =
1

(2π)3

(
2mπ

β

) 3
2 2π

βmω2
(z2 − z1) (7)

Giving us

Z1 =

(
m

2πβ

) 1
2 1

(βω)2
L (8)

Finally we get ZN = ZN1 =

((
m
2πβ

) 1
2 1

(βω)2
L

)N
We can now calculate the energy and from it the heat capacity.

log(ZN ) = N

(
log(

(
m

2πβ

) 1
2

) + log(
1

(βω)2
) + log(L)

)
(9)

= N

(
−1

2
log(β)− 2 log(β) + const

)
(10)
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The energy and heat capacity:

E = −∂ log(ZN )

∂β
=

5

2
NT (11)

C(T ) =
dE

dT
=

5

2
N (12)

(b) The stationary state are |pz, ny, nx〉; where pz = 2π
L nz ; nz = 0, 1, 2....

So now the energy of the system is

Epz ,ny ,nx =
p2z
2m

+ (
1

2
+ ny)ω + (

1

2
+ nx)ω (13)

Calculating the partition function we get

Z1 =

∞∫
−∞

z2∫
z1

dpzdze
−β p

2
z

2m

∞∑
nx,ny

e−β(
1
2
+ny)ω+( 1

2
+nx)ω (14)

= L

(
2mπ

β

) 1
2 e−

1
2
βω

1− e−βω
e−

1
2
βω

1− e−βω
(15)

= L

(
2mπ

β

) 1
2

(
1

2 sinh 1
2βω

)2

(16)

(17)

ZN =

L(2mπ

β

) 1
2

(
1

2 sinh 1
2βω

)2
N

(18)

We now ask ourselves when is L large enough for us to make the transition from sum on pz
to an integral. Let us write explicitly the sum on pz:

∑
pz

e−β
p2nz
2m =

∑
nz

e−
β
2m

( 2π
L
)2n2

z →
∞∫
−∞

dn e−
β
2m

( 2π
L
)2n2

z (19)

This transition to integral is only justified if L >> ( 1
mT )

1
2

(c) In the exact same manner as in article (a) we can calculate the energy and the heat capacity
for the quantum partition function.

logZn = N log

L(2mπ

β

) 1
2

(
1

2 sinh 1
2βω

)2
 (20)

= −1

2
N log β − 2N log 2 sinh

(
1

2
βω

)
+ const (21)

E = −∂ logZN
∂β

=
1

2
NT +Nω coth(

1

2
βω) (22)

C(T ) =
dE

dT
=

1

2
N +Nω

d coth 1
2βω

dT
= { d

dT
= − 1

T 2

d

dβ
} = (23)

=
1

2
N − Nω

T 2

d coth 1
2βω

dβ
=

1

2
N +

1

2
N(

ω

T
)2

1

sinh2 1
2βω

(24)
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Finally giving us

C(T ) =
1

2
N + 2N(

ω

T
)2

e
ω
T

(e
ω
T − 1)2

(25)

Taking high temperature - meaning T >> ω - we receive:

C(T ) =
1

2
N + 2N(

ω

T
)2

1

(1 + ω
T − 1)2

=
5

2
N (26)

Which is the exact same result as in the classical case.

(d) The force is giving by F = T ∂ logZN
∂X , in our case we are looking for the forces on the upper

and lower walls.
We notice that in both classical and quantum cases we have logZN = N logL+ f(T ) finally
giving us the forces on both walls,

F1 = T
∂ logZN
∂z1

= −NT
L

(27)

F2 = T
∂ logZN
∂z2

=
NT

L
(28)

(e) The new Hamiltonian will be constructed by the previous Hamiltonian and an addition of the
electric field

H = Hclass − eEz (29)

The partition function will be calculated in the same way as article (a) only with the addition
of the field, giving us

Z1 =

∫
d3pd3x

(2π)3
e−β((

p2x
2m

+ 1
2
mω2x2)+(

p2y
2m

+ 1
2
mω2y2)+

p2z
2m
−eEz) (30)

=

∞∫∫
−∞

dpxdx

2π
e−β(

p2x
2m

+ 1
2
mω2x2)

∞∫∫
−∞

dpydy

2π
e−β(

p2y
2m

+ 1
2
mω2y2)

∞∫
−∞

z2∫
z1

dpzdz

2π
e−β(

p2z
2m
−eEz)(31)

Due to the same reason we listed in article (a) this integral is equal to

Z1 =

 ∞∫
−∞

dp

2π
e−β

p2

2m

3 ∞∫
−∞

dx

2π
e−β

1
2
mω2x2

2 z2∫
z1

dzeβeEz (32)

=
1

(2π)3

(
2mπ

β

) 3
2 2π

βmω2

eeβEz2 − eeβEz1

eβE
(33)

It is easy to see that when E → 0 we can expand the exponents and receive the original
classical partition function.
In the same way as throughout this entire exercise, ZN = ZN1
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(f) Calculating the forces on each wall we use the formula F = T ∂ logZN
∂X resulting in the following

F1 = T
∂ logZN
∂z1

= NT
−eβEeeβEz1

(eeβEz2 − eeβEz1)
(34)

F2 = T
∂ logZN
∂z2

= NT
eβEeeβEz2

(eeβEz2 − eeβEz1)
(35)

Using only the allowed parameters we finally get the forces

F1 = −NeE 1

(eeβEL − 1)
(36)

F2 = T
∂ logZN
∂z2

= NeE 1

(1− e−eβEL)
(37)

And the resultant force working the system: Ftot = F1 + F2 = NeE as expected.

(g) The polarization is giving by: P̃ = T ∂ logZN
∂E . Using the properties of log we get

P̃ = Ne
∂(log eeβEz2−eeβEz1

eβE )

∂E
+

∂

∂E
(const) (38)

= Ne

(
− 1

eβE
+
z2e

eβEz2 − z1eeβEz1
eeβEz2 − eeβEz1

)
(39)

Unless we want an un-physical constant in our equation we will need to choose the middle of
the system as our zero. Thus making z2 = L

2 and z1 = −L
2 and giving us

P̃ = Ne

(
− 1

eβE
+

1

2
L coth

1

2
eβEL

)
(40)

(h) In order to expand P̃ we must first demand

eβEL << 1 → L <<
T

eE
(41)

we can now expand the coth up to first order and receive

P =
Ne

L

(
− 1

eβE
+

1

2
L coth

1

2
eβEL

)
= {cothx ≈ 1

x
+
x

3
+O(x3)} = (42)

=

(
− Ne

eβEL
+

1

2

NeL
1
2eβEL2

+
1
4eβEL

2Ne

3L
+O(E3)

)
= (43)

=
Ne2βEL

12
+O(E3) (44)

We can now easily identify χ = Ne2βL
12
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