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The problem:

An ideal classical gas of N particles of mass m is in a container of height L which is in a gravitational
field of a constant acceleration g. The gas is in uniform temperature T .

(a) Find the dependence P (h) of the pressure on the height h.

(b) Find the partition function and the internal energy. Examine the limits mgL ≪ kBT and
mgL ≫ kBT .

(c) Consider an adiabatic atmosphere, i.e. the atmosphere has been formed by a constant entropy
process in which T, µ, are not equilibrated, but Pn−γ = const., equilibrium is maintained
within a layer at height h. Find T (h) and n(h) in terms of the density n0 and temperature
T0 at h = 0.

Baruch’s A19.

The solution:

(a) For a layer of height dh and area A in mechanical equilibrium:

A [P (h) − P (h + dh)] = n(h)mg · Adh (1)

leading to the differential equation:

dP = −nmg · dh (2)

Since that for an ideal gas P = nT , we can write:

dP

P
= −βmg · dh ⇒ P (h) = P0 e−βmgh (3)

In order to find P0, we integrate over n(h) to get the total number of particles:
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from which we get P0 = Nmg
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(b) The one particle partition function is:
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The N -particles partition function is simply 1
N !Z

N
1 .The internal energy is given by:
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In the high tempratures limit βmgL ≪ 1 the internal energy behaves as a 3D ideal gas:
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as expected. Thus it is not surprising that we get uniform density:

n(h) = βP (h) =
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In the low temperature limit βmgL ≫ 1:
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and unless h = 0, the density goes to zero:

n(h) ≈
N

V
βmgLe−βmgh

→
N

A
δ(h) (10)

meaning that all particles are at the bottom of the container.

(c) We now have an adiabatic process where P = Cnγ with γ > 1. Within each layer equilibrium
is maintained, so the usual state-equation of the ideal gas holds. For h = 0 we have:

P0 = Cn
γ
0 = n0T0 ⇒ C = T0n

1−γ
0 (11)

Using dP = γCnγ−1dn , equation (2) now has the form:

γCnγ−1dn = −nmg · dh ⇒

∫ n

n0

nγ−2dn = −
mgh
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(12)

We obtain:
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where we have used (11) in the last equality. We can now write:

n(h) = n0
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γ
·
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and the temperature is:

T (h) = Pn−1 = Cnγ−1 = T0 −

(

γ − 1

γ

)

mgh (15)

We can see that both the temperature and the density decrease as we elevate and they vanish
when we reach h = γT0

(γ−1)mg
.
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