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The problem:

An ideal classical gas of N particles of mass m is in a container of height L which is in a gravitational
field of a constant acceleration g. The gas is in uniform temperature 7.

(a) Find the dependence P (h) of the pressure on the height h.

(b) Find the partition function and the internal energy. Examine the limits mgL < kT and
mgL > kpT.

(¢) Consider an adiabatic atmosphere, i.e. the atmosphere has been formed by a constant entropy
process in which T, u, are not equilibrated, but Pn™" = const., equilibrium is maintained
within a layer at height h. Find T'(h) and n(h) in terms of the density ny and temperature
T() at h =0.

Baruch’s A19.

The solution:

(a) For a layer of height dh and area A in mechanical equilibrium:
A[P(h) — P(h+ dh)] =n(h)mg - Adh (1)
leading to the differential equation:
dP = —nmg - dh (2)
Since that for an ideal gas P = nT, we can write:
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In order to find Py, we integrate over n(h) to get the total number of particles:
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from which we get Py = Y29 (1 — e—ﬁmgL)*l

(b) The one particle partition function is:
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The N-particles partition function is simply N'Z N The internal energy is given by:
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In the high tempratures limit SmgL < 1 the internal energy behaves as a 3D ideal gas:
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as expected. Thus it is not surprising that we get uniform density:
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In the low temperature limit SmgL > 1:
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and unless h = 0, the density goes to zero:
N —Bmgh
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meaning that all particles are at the bottom of the container.

We now have an adiabatic process where P = C'n” with v > 1. Within each layer equilibrium
is maintained, so the usual state-equation of the ideal gas holds. For h = 0 we have:

Py = C’I?,g = nglp = C = T()TL(I)_’Y (11)

Using dP = yCn?"ldn , equation (2) now has the form:
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where we have used (11) in the last equality. We can now write:
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and the temperature is:
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We can see that both the temperature and the density decrease as we elevate and they vanish

when we reach h = 1o
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