E2042: Pressure of an ideal gas in a box with gravitation

Submitted by: Yair Vardi and Geva Arwas

The problem:

An ideal classical gas of N particles of mass m is in a container of height L which is in a gravitational field of a constant acceleration g. The gas is in uniform temperature T.
(a) Find the dependence $P(h)$ of the pressure on the height h.
(b) Find the partition function and the internal energy. Examine the limits $m g L \ll k_{B} T$ and $m g L \gg k_{B} T$.
(c) Consider an adiabatic atmosphere, i.e. the atmosphere has been formed by a constant entropy process in which T, μ, are not equilibrated, but $\mathrm{Pn}^{-\gamma}=$ const., equilibrium is maintained within a layer at height h. Find $T(h)$ and $n(h)$ in terms of the density n_{0} and temperature T_{0} at $h=0$.

Baruch's A19.

The solution:

(a) For a layer of height $d h$ and area A in mechanical equilibrium:

$$
\begin{equation*}
A[P(h)-P(h+d h)]=n(h) m g \cdot A d h \tag{1}
\end{equation*}
$$

leading to the differential equation:

$$
\begin{equation*}
d P=-n m g \cdot d h \tag{2}
\end{equation*}
$$

Since that for an ideal gas $P=n T$, we can write:

$$
\begin{equation*}
\frac{d P}{P}=-\beta m g \cdot d h \quad \Rightarrow \quad P(h)=P_{0} \mathrm{e}^{-\beta m g h} \tag{3}
\end{equation*}
$$

In order to find P_{0}, we integrate over $n(h)$ to get the total number of particles:

$$
\begin{equation*}
A \int_{0}^{L} n(h) d h=A \beta P_{0} \int_{0}^{L} \mathrm{e}^{-\beta m g h} d h=\frac{A P_{0}}{m g}\left(1-\mathrm{e}^{-\beta m g L}\right)=N \tag{4}
\end{equation*}
$$

from which we get $P_{0}=\frac{N m g}{A}\left(1-\mathrm{e}^{-\beta m g L}\right)^{-1}$.
(b) The one particle partition function is:

$$
\begin{equation*}
\left.Z_{1}=\frac{1}{(2 \pi)^{3}} \int d^{3} p d^{3} x \mathrm{e}^{-\beta\left(\frac{p^{2}}{2 m}+m g h\right.}\right)=\frac{A}{\lambda_{T}^{3}} \int_{0}^{L} \mathrm{e}^{-\beta m g h} d h=\frac{A}{\lambda_{T}^{3}} \frac{1-\mathrm{e}^{-\beta m g L}}{\beta m g} \tag{5}
\end{equation*}
$$

The N-particles partition function is simply $\frac{1}{N!} Z_{1}^{N}$. The internal energy is given by:

$$
\begin{equation*}
E=-\frac{\partial \ln Z}{\partial \beta}=\frac{N}{\beta}\left(\frac{5}{2}-\frac{\beta m g L}{\mathrm{e}^{\beta m g L}-1}\right) \tag{6}
\end{equation*}
$$

In the high tempratures limit $\beta m g L \ll 1$ the internal energy behaves as a $3 D$ ideal gas:

$$
\begin{equation*}
E \approx \frac{N}{\beta}\left(\frac{5}{2}-\frac{\beta m g L}{1+\beta m g L-1}\right)=\frac{3}{2} N T \tag{7}
\end{equation*}
$$

as expected. Thus it is not surprising that we get uniform density:

$$
\begin{equation*}
n(h)=\beta P(h)=\frac{N}{V} \frac{\beta m g L \mathrm{e}^{-\beta m g h}}{1-\mathrm{e}^{-\beta m g L}} \approx \frac{N}{V} \tag{8}
\end{equation*}
$$

In the low temperature limit $\beta m g L \gg 1$:

$$
\begin{equation*}
E \approx \frac{N}{\beta}\left(\frac{5}{2}-\beta m g L \mathrm{e}^{-\beta m g L}\right) \approx \frac{5}{2} N T \tag{9}
\end{equation*}
$$

and unless $h=0$, the density goes to zero:

$$
\begin{equation*}
n(h) \approx \frac{N}{V} \beta m g L \mathrm{e}^{-\beta m g h} \rightarrow \frac{N}{A} \delta(h) \tag{10}
\end{equation*}
$$

meaning that all particles are at the bottom of the container.
(c) We now have an adiabatic process where $P=C n^{\gamma}$ with $\gamma>1$. Within each layer equilibrium is maintained, so the usual state-equation of the ideal gas holds. For $h=0$ we have:

$$
\begin{equation*}
P_{0}=C n_{0}^{\gamma}=n_{0} T_{0} \quad \Rightarrow \quad C=T_{0} n_{0}^{1-\gamma} \tag{11}
\end{equation*}
$$

Using $d P=\gamma C n^{\gamma-1} d n$, equation (2) now has the form:

$$
\begin{equation*}
\gamma C n^{\gamma-1} d n=-n m g \cdot d h \quad \Rightarrow \quad \int_{n_{0}}^{n} n^{\gamma-2} d n=-\frac{m g h}{\gamma C} \tag{12}
\end{equation*}
$$

We obtain:

$$
\begin{equation*}
n^{\gamma-1}=n_{0}^{\gamma-1}-(\gamma-1) \frac{m g h}{\gamma C}=n_{0}^{\gamma-1}\left(1-\frac{\gamma-1}{\gamma} \cdot \frac{m g h}{n_{0}^{\gamma-1} C}\right)=n_{0}^{\gamma-1}\left(1-\frac{\gamma-1}{\gamma} \cdot \frac{m g h}{T_{0}}\right) \tag{13}
\end{equation*}
$$

where we have used (11) in the last equality. We can now write:

$$
\begin{equation*}
n(h)=n_{0}\left(1-\frac{\gamma-1}{\gamma} \cdot \frac{m g h}{T_{0}}\right)^{\frac{1}{\gamma-1}} \tag{14}
\end{equation*}
$$

and the temperature is:

$$
\begin{equation*}
T(h)=P n^{-1}=C n^{\gamma-1}=T_{0}-\left(\frac{\gamma-1}{\gamma}\right) m g h \tag{15}
\end{equation*}
$$

We can see that both the temperature and the density decrease as we elevate and they vanish when we reach $h=\frac{\gamma T_{0}}{(\gamma-1) m g}$.

