Ex1816: Cooling by adiabatic demagnetization

Submitted by: Zion Hazan and Yair Yifrach

The problem:

Consider a system of N spins on a lattice at temperature T', each spin has a magnetic moment . In
presence of an external magnetic field each spin has two energy levels, uH.

1) Evaluate the changes in energy 6E and in entropy 65 as the magnetic field increases from 0

2)

to H. Derive the magnetization M (H) and show that
H
0E =T6S — / M (H')dH'.
0

Interpret this result.

What is the temperature change when H is reduced to zero in an adiabatic process. Explain
how can this operate as a cooling machine to reach 7'~ 107*K. (Note: below 104K in
realistic systems spin-electron or spin-spin interactions reduce S (T, H =0) — 0 as T — 0.
This method is known as cooling by adiabatic demagnetization).

The solution:

)

Let’s recall the definition of Helmholtz free energy:

F=FE-TS (1)
Solve for E:
E=TS+F (2)

Where the energy, entropy and Helmholtz free energy are functions of T, H, N.

Let’s differentiate Eq.(2), remembering that the temperature and the number of spin are held
fix:

OF
E=T — H
d dS+<aH)TNd (3)

Let’s consider the average magnetization M as the generalized force, conjugate to the external
magnetic field H:

OF

mer. N = - () (@
OH ) 1 n

Plug in Eq.(4) to Eq.(3) and integrate over the field:

H
§E =T6sS — / M(T,H',N)dH' (5)
0

Where 0E and §S are respectively the change of the energy and entropy during the change of
the external magnetic field.



2) The Hamiltonian of the interaction of a spin with magnetic moment p in a magnetic field H
is:

H=—puH (6)
Where p; is either +p or —p

Let’s calculate the partition function of a single spin:

Zy = exp(BuiH) = exp(BuH) + exp(—BuH) = 2 cosh(BuH) (7)
i

Thus, since we neglect interaction between the spins and consider only the interaction with
the external field, the partition function for N spins will be:

Z = Z{" = (2cosh(BpH))" (8)

In an adiabatic process there is no change in entropy.

The entropy is derived by:

OF 0 )
S =~ 55 = 5rTn(Z) = In(2) + T 7in(Z) =

= (o 2o (7)) = 5 o (1))

Where we used F' = —TlIn(Z).
Let’s take the differential of Eq.(9):

0S8 0S
O—dS(T,H,N)—a—TdT—i-a—HdH (10)
Where in the last equation we assume that N is held fix.
After some algebra, utilizing Eq.(9) in Eq.(10), we arrive at:
dT"  dH
o 11

Let’s integrate Eq.(11) over the process:

Trar Hi dH Hy
/TZ, T Jy H T H
So, we conclude that:
AH
ATadiabatic = ?Tz (13)
7

We can see, from Eq.(12), that as Hy — 0; Ty — 0.

This can operate as a refrigerator, in analogy to the carnot cycle applied in gas compression.
The process is illustrated in the images below.
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Figure 1: taken from wikipedia
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Figure 2: taken from newenergyandfuel.com/

In realistic systems, there also spin-spin and spin-nuclear interactions, so we cannot reduce
the effective magnetic field to zero, so there is a limit on how much we can cool the specimen.
For further reading see Thermal Physics, Kittel, SE, page 346.



