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The problem:

Consider a system of N spins on a lattice at temperature T , each spin has a magnetic moment . In
presence of an external magnetic field each spin has two energy levels, µH.

1) Evaluate the changes in energy δE and in entropy δS as the magnetic field increases from 0
to H. Derive the magnetization M(H) and show that

δE = TδS −
∫ H

0
M
(
H ′
)
dH ′.

Interpret this result.

2) What is the temperature change when H is reduced to zero in an adiabatic process. Explain
how can this operate as a cooling machine to reach T ≈ 10−4K. (Note: below 10−4K in
realistic systems spin-electron or spin-spin interactions reduce S (T,H = 0)→ 0 as T → 0.
This method is known as cooling by adiabatic demagnetization).

The solution:

1) Let’s recall the definition of Helmholtz free energy:

F = E − TS (1)

Solve for E:

E = TS + F (2)

Where the energy, entropy and Helmholtz free energy are functions of T,H,N .
Let’s differentiate Eq.(2), remembering that the temperature and the number of spin are held
fix:

dE = TdS +

(
∂F

∂H

)
T,N

dH (3)

Let’s consider the average magnetization M as the generalized force, conjugate to the external
magnetic field H:

M(T,H,N) = −
(
∂F

∂H

)
T,N

(4)

Plug in Eq.(4) to Eq.(3) and integrate over the field:

δE = TδS −
∫ H

0
M(T,H ′, N)dH ′ (5)

Where δE and δS are respectively the change of the energy and entropy during the change of
the external magnetic field.
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2) The Hamiltonian of the interaction of a spin with magnetic moment µ in a magnetic field H
is:

H = −µiH (6)

Where µi is either +µ or −µ

Let’s calculate the partition function of a single spin:

Z1 =
∑
µi

exp(βµiH) = exp(βµH) + exp(−βµH) = 2 cosh(βµH) (7)

Thus, since we neglect interaction between the spins and consider only the interaction with
the external field, the partition function for N spins will be:

Z = ZN1 = (2 cosh(βµH))N (8)

In an adiabatic process there is no change in entropy.

The entropy is derived by:

S = −∂F
∂T

=
∂

∂T
T ln(Z) = ln(Z) + T

∂

∂T
ln(Z) =

= N

(
ln

(
2 cosh

(
µH

T

))
− µH

T
tanh

(
µH

T

)) (9)

Where we used F = −T ln(Z).

Let’s take the differential of Eq.(9):

0 = dS(T,H,N) =
∂S

∂T
dT +

∂S

∂H
dH (10)

Where in the last equation we assume that N is held fix.

After some algebra, utilizing Eq.(9) in Eq.(10), we arrive at:

dT

T
=
dH

H
(11)

Let’s integrate Eq.(11) over the process:∫ Tf

Ti

dT

T
=

∫ Hf

Hi

dH

H
⇒ Tf =

Hf

Hi
Ti (12)

So, we conclude that:

∆Tadiabatic =
∆H

Hi
Ti (13)

We can see, from Eq.(12), that as Hf → 0;Tf → 0.

This can operate as a refrigerator, in analogy to the carnot cycle applied in gas compression.
The process is illustrated in the images below.
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Figure 1: taken from wikipedia

Figure 2: taken from newenergyandfuel.com/

In realistic systems, there also spin-spin and spin-nuclear interactions, so we cannot reduce
the effective magnetic field to zero, so there is a limit on how much we can cool the specimen.
For further reading see Thermal Physics, Kittel, SE, page 346.
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