Ex1814: Adiabatic versus sudden expansion of an ideal gas

Submitted by: Moamen Jbara

The problem:

N atoms of mass m of an ideal classical gas are in a cylinder with insulating walls, closed at one end by a piston. The initial volume and temperature are V_{0} and T_{0}, respectively.
(a) If the piston is moving out rapidly the atoms cannot perform work, i.e. their energy is constant. Find the condition on the velocity of the piston that justifies this result.
(b) Find the change in temperature, pressure and entropy if the volume increases from V_{0} to V_{1} under the conditions found in (a).
(c) Find the change in temperature, pressure and entropy if the volume increases from V_{0} to V_{1} with the piston moving very slowly, i.e. an adiabatic process.

The solution:

(a) According to the equipartition law, in temperature T the kinetic energy of each particle equals $\frac{T}{2}$, so in order to reach the required situation in the question, the velocity of the piston have to be larger than than the thermal velcoity of the particles :
$v_{p}>v_{T h}=\left(\frac{T}{m}\right)^{\frac{1}{2}} \Rightarrow v_{p}>\left(\frac{T}{m}\right)^{\frac{1}{2}}$
(b) It's given in (a) that the energy of the gas is constant. The energy of an ideal gas is :

$$
\begin{equation*}
E=\frac{3 N T}{2} \tag{1}
\end{equation*}
$$

Since the energy is constant, we can write :
(*) $E_{0}=E_{1} \Rightarrow T_{0}=T_{1}$
Therefore :

$$
\begin{equation*}
\Delta T=0 \tag{2}
\end{equation*}
$$

The pressure is :

$$
\begin{align*}
& P=\frac{N T}{V}=n T \tag{3}\\
& \Delta P=P_{1}-P_{0}=\frac{N T_{1}}{V_{1}}-\frac{N T_{0}}{V_{0}} \tag{4}
\end{align*}
$$

We substitute equation $\left(^{*}\right)$ in the last equation and we get :

$$
\begin{equation*}
\Delta P=\frac{N T_{1}}{V_{1}}-\frac{N T_{1}}{V_{0}} \tag{5}
\end{equation*}
$$

Since $V_{1}>V_{0} \Rightarrow P_{1}<P_{0} \Rightarrow \Delta P<0$.

$$
\begin{equation*}
S=-\left(\frac{\partial F}{\partial T}\right)_{V}=N\left(\ln \left(\frac{1}{n \lambda_{T_{0}}{ }^{3}}\right)+\frac{5}{2}\right) \tag{6}
\end{equation*}
$$

When : $\lambda_{T}=\left(\frac{2 \pi}{m T}\right)^{\frac{1}{2}}$
N and T are constants so λ_{T} is also constant and only thing that changes is the volume V .

$$
\begin{equation*}
\Delta S=S_{1}-S_{0}=N\left(\ln \left(\frac{1}{n_{1} \lambda_{T}{ }^{3}}\right)+\frac{5}{2}\right)-N\left(\ln \left(\frac{1}{n_{0} \lambda_{T}{ }^{3}}\right)+\frac{5}{2}\right)=N\left(\ln \left(\frac{V_{1}}{V_{0}}\right)\right) \tag{7}
\end{equation*}
$$

Since $V_{1}>V_{0} \Rightarrow \ln \left(\frac{V_{1}}{V_{0}}\right)>0 \Rightarrow \Delta S>0$.
(c) It's given that the process is adiabatic, i.e $\Delta Q=0$ and $\Delta S=0$.
$\Delta S=0 \Rightarrow S_{0}=S_{1}$.
Because our gas is ideal, we can use equation (7) again (only N is constant) :

$$
\begin{align*}
& N\left(\ln \left(\frac{1}{n_{1} \lambda_{T_{1}}{ }^{3}}\right)+\frac{5}{2}\right)=N\left(\ln \left(\frac{1}{n_{0} \lambda_{T_{0}}{ }^{3}}\right)+\frac{5}{2}\right) \Rightarrow T_{1}=T_{0}\left(\frac{V_{0}}{V_{1}}\right)^{\frac{2}{3}} \tag{8}\\
& \Delta T=T_{1}-T_{0}=T_{0}\left(\frac{V_{0}}{V_{1}}\right)^{\frac{2}{3}}-T_{0}=T_{0}\left(\left(\frac{V_{0}}{V_{1}}\right)^{\frac{2}{3}}-1\right) \tag{9}
\end{align*}
$$

In the second transition, we used the expression for T_{1} that we got from equation 8 .
Since $V_{0}<V_{1} \Rightarrow \Delta T<0$.

$$
\begin{equation*}
\Delta P=P_{1}-P_{0}=\frac{N T_{1}}{V_{1}}-\frac{N T_{0}}{V_{0}}=N\left(\frac{T_{1}}{V_{1}}-\frac{T_{0}}{V_{0}}\right)=\frac{N T_{0}}{V_{0}}\left(\left(\frac{V_{0}}{V_{1}}\right)^{\frac{5}{3}}-1\right) \tag{10}
\end{equation*}
$$

In the last transition, we used the expression for T_{1} that we got from equation 8 .
Since $V_{0}<V_{1} \Rightarrow \Delta P<0$.

