Fluctuations in the number of particles

Submitted by: Amir Bernat

The problem:

A closed tank of volume V_{0} has N_{0} particles. "The system" is a subvolume V. The number of particles in V is the random variable N. Define the random variables \hat{X}_{n} which determines if a certain particle is in the system.

$$
X_{n}=\left\{\begin{array}{l}
1, \quad \text { the particle is in } V \\
0, \quad \text { the particle is not in } V
\end{array}\right.
$$

(a) Express \hat{N} using \hat{X}_{n}. By fundamental theorems on adding independent random variables find $\langle N\rangle, \operatorname{Var}(N)$.
(b) Find the probability function $f(N)$. Using combinatorial considerations and calculate $\langle\hat{L}\rangle$, $\operatorname{Var}(L)$.
(c) Assume $\left|V / V_{0}-\frac{1}{2}\right| \ll 1$ and treat N as a continuous random variable. Find the probability function $f(N)$.

The solution:

(a) The probability for finding the particle in the subvolume is $p=\frac{V}{V_{0}}$. As each particle is in $\left(X_{n}=1\right)$ or out $\left(X_{n}=0\right)$ of the subvolume the number of particles is the sum $N=\sum_{n=1}^{N} X_{n}$. The random variable $\left\langle\hat{X}_{n}\right\rangle=1 \cdot p+0 \cdot q$ can also be sumed, as the expectation operator E is linear in the sense that $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$, then we can denote:

$$
\begin{equation*}
\langle N\rangle=\sum_{n=1}^{N_{0}}\left\langle X_{n}\right\rangle=N_{0} p \tag{1}
\end{equation*}
$$

To find $\operatorname{Var}(N)$ let us find the variance of X_{n} and use the linearity property $\operatorname{Var}(X+Y)=$ $\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$. The random variables X_{n} are not dependant, meaning they have a Covariance of 0 . The variance operator of N is then:

$$
\begin{equation*}
\operatorname{Var}(N)=\sum_{n=1}^{N_{0}} \operatorname{Var}\left(X_{n}\right)=N_{0}\left((p)-(p)^{2}\right)=N_{0} p(1-p)=N_{0} p q \tag{2}
\end{equation*}
$$

(b) The number of ways to choose N out of N_{0} objects with no importance to the order is $C_{N_{0}}^{N}=$ $\frac{N_{0}!}{N!\left(N_{0}-N\right)!}$. So the probability for the number of particles to be N takes the form of binomial distribution:

$$
\begin{equation*}
f(N)=\sum_{n=1}^{N_{0}} C_{N}^{N_{0}} p^{N} q^{N_{0}-N} \tag{3}
\end{equation*}
$$

The expectation value and variance can be found by use of the moment generating function of the binomial distribution $M(v)=\left(p e^{v}+(1-p)\right)$ and the linearity properties.

$$
\begin{equation*}
\langle N\rangle=\sum_{n=1}^{N_{0}}\left\langle X_{n}\right\rangle=\sum_{n=1}^{N_{0}} \frac{\partial M(v)}{\partial v}{ }_{\mid v=0}=N_{0} p \tag{4}
\end{equation*}
$$

In a similar way using the second moment (second derivative) we can find the variance:

$$
\begin{equation*}
\operatorname{Var}(N)=\sum_{n=1}^{N_{0}} \operatorname{Var}\left(X_{n}\right)=\sum_{n=1}^{N_{0}}\left[\frac{\partial^{2} M(v)}{\partial v^{2}}-\left(\frac{\partial M(v)}{\partial v}\right)^{2}\right]=N_{0} p(1-p) \tag{5}
\end{equation*}
$$

(c) The case when $\left|V / V_{0}-\frac{1}{2}\right| \ll 1$ is of particular interest, it is the extremum of $\operatorname{Var}(N)=n p(1-p)$ as a function of p.
Considering N as a continues random variable is analogues to having a very large number of particles, thus allowing us to make use of the central limit theorem. The probability function of a random variable with $\operatorname{Var}(X)=\sigma^{2}(x)$ and $\langle X\rangle=\bar{X}$ is:

$$
\begin{equation*}
f(X)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(X-\langle X\rangle)^{2}}{2 \sigma^{2}}\right] \tag{6}
\end{equation*}
$$

It is possible to approximate the probability function found in (b) by making use of Stirling's formula $n!\simeq n^{n} e^{-n} \sqrt{2 \pi n}$, which holds for large n. The full derivation is known as the De Moivre - Laplace theorem which states:

$$
\begin{equation*}
f(N)=\sum_{n=1}^{N_{0}} C_{N_{0}}^{N} p^{N} q^{N_{0}} \simeq \frac{1}{\sqrt{2 \pi N_{0} p q}} \exp \left[\frac{-\left(N-N_{0} p\right)^{2}}{2 N_{0} p q}\right] \tag{7}
\end{equation*}
$$

Full derivation can be found at http://mathworld.wolfram.com/BinomialDistribution.html (Eq 34 -65). For the case where $p=V / V_{0}=\frac{1}{2}$ we have:

$$
\begin{equation*}
f(N)=\frac{1}{\sqrt{\pi \frac{N_{0}}{2}}} \exp \left[\frac{-\left(N-\frac{N_{0}}{2}\right)^{2}}{\frac{N_{0}}{2}}\right] \tag{8}
\end{equation*}
$$

