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The problem:

Consider a set of N random variables x̂j . Each variable can get the values 1 or 0 with probabilities

p and q = 1− p respectively. Define x̂ = (1/N)
∑
j

x̂j . Define F̄ (x) = Prob(x̂ > x).

1) Find an approximation F̄ (x) ∼ exp[−S(x)], in terms of an explicit elementary function
SCLT (x), based on the central limit theorem (CLT). Note that the exact result is an error
function.

2) Find an approximation F̄ (x) ∼ exp[−S(x)], in terms of an explicit function SLDT (x), based
on large deviation theory (LDT).

3) Compare the CLT and LDT approximation at the edges of the range of x̂.

(a) Include analytical analysis of the behaviour at x→ 1/0

(b) Include a Graphical analysis using a Semi-log scale plot of the approximation of F̄ (x)

4) Compare the CLT and LDT approximation around the expected value 〈x1〉.

(a) Include analytical analysis of the behaviour around x ≈ 〈x1〉 (Taylor expansion).

(b) Include a Graphical analysis using a plot of the approximation of F̄ (x)

5) What would be the answers if the x̂j had normal probability distribution with the same
average and variance?

6) Repeat section 1-4 for exponential distribution, x1 ∼ Exp(α).

7) Prove that for every distribution that satisfy the LDT requirements, SCLT and SLDT are equal
up to the second order.

The solution:

1) Let x̂ =
1

n

n∑
j=1

xj and let us first consider xj to be a general i.i.d random variables and extract a

more practical result from the Central Limit Theorem (CLT).
denote:

µ = 〈x1〉 and σ2 = V ar(x1)

We saw in class that the CLT states:

ŷ :=

∑n
j=1 xj − nµ√

nσ
then lim

n→∞
ŷ ∼ N(0, 1)

A short calculation using change of integration variables shows that for any variable ẑ ∼ N(0, 1):

aẑ + b ∼ N(b, a2) (1)
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Noticing that x̂ =
σ√
n
ŷ + µ we conclude that for large enough n :

x̂ ∼ N(µ,
σ2

n
) (2)

Back to our case where x1 ∼ Ber(p), and so have:

µ = p and = σ2 = p(1− p)

At last we note the F̄ (x) as defined above is the tail destribution (ccdf) and we get our two
approximations, the first which is excatly CLT:

(i) Exact: F (x) ≈ 1− 1√
p(1−p)
n

∫ x

−∞
exp

(
−(t− p)2

2p(1−p)
n

)
dt√
2π

and the second which is the asymptotic approximation for erf and is more convenient to present it
with the Folded CDF defined as C(x) = min{F̄ (x), 1− F̄ (x))}:

(ii) Elementary function: C(x) ∼ exp

(
−(x− p)2

2p(1−p)
n

)
, where SCLT (x) = − n

2p(1− p)
(x− p)2

Note: 1− F̄ (x) is exactly F (x) the cdf.

2) Since Large Deviations theory (LDT) is not so commonly known as CLT, I will give a formal
phrase of a theorem which is the main result of the theory.
Cramer’s theorem: Define x̂ as above and assume that

Z(λ) := 〈eλx1〉 <∞ ∀λ ∈ R

and define:

I(x) := sup
λ∈R

[xλ− log(Z(λ))]

then

(i) lim
n→∞

1

n
logP[x̂ ≥ x] = −I(x), ∀x > µ

(ii) lim
n→∞

1

n
logP[x̂ ≤ x] = −I(x), ∀x < µ

Now let us calculate I(x) for our case which is x̂1 ∼ Ber(p):

Z(λ) = 〈eλx1〉 = peλ + (1− p)

insert this result to the definition of I(x) gives:

I(x) = sup
λ∈R

[xλ− log(peλ + (1− p))]

finding λ(x) which gives the supremum is done by requiring that:

d

dλ

(
xλ− log(peλ + (1− p))

)
= 0

which gives:

I(x) = xlog(x) + (1− x)log(1− x)− xlog(p)− (1− x)log(1− p) (3)

At last by Cremar’s theorem we get our approximation for a large enough n
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(i) F̄ (x) ≈ e−nI(x), ∀x > p

(ii) F̄ (x) ≈ 1− e−nI(x), ∀x < p

A more compact and maybe more illuminating way to express the above is:

C(x) ∼ e−nI(x), and SLDT = −nI(x)

3) In this section we would like to compare the results we got from the previous sections, both
graphically and analytically.
Before we begin we shall note that exact expression for F̄ (x) is:

F̄ (x) = P[x̂ > x] =

n∑
k=dxe

(
n

k

)
pk(1− p)n−k

this result is easily reached using combinatorial arguments and since it doesn’t contribute to the
goal of this exercise we shall leave it for the reader.

Let us begin with the analytical analysis and examine the behaviour at the edges, x→ 1:

SCLT (1) := lim
x→1

SCLT (x) = −n1− p
2p

SLDT (1) := lim
x→1

SLDT (x) = −nlog(p)

so looking at the behaviour at the edge as a function of p we find that:

lim
p→0

SCLT (1)

SLDT (1)
=∞

thus we conclude that for a small p the CLT approximation would yield smaller values then the
LDT approximation.
Note that a similar behaviour is obtained by letting x→ 0 and p→ 1.

Now let us look at the log-scale plot of C(x) for a small p in Figure 1 (b), comparing the plots a-d,
we can see that at the edges LDT gives us a much better approximation then the CLT approxima-
tion.
In addition both CLT approximation - erf and the asymptotic approximation, give a similar result.
Last we note that the LDT line is above the CLT line as expected from the previous analysis.

It is also interesting to look at same log-scale plot of C(x) but for a more balnced value of p as in
Figure 2 (b), this time the graph is more centered and both approximation give a similar result.

4)We would like to examine behaviour around the expected value as well, again we begin with an
analytical analysis. It is enlightening to expend SLDT (x) around µ = p in Taylor series, which in
leading order is:

SLDT (x) ≈ n

2p(1− p)
(x− p)2 = SCLT (x)

leading us to conclude that around the expected value SCLT and SLDT are equal up to a leading
order thus we shall expect a similar behaviour.
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Figure 1: (a): Normal plot of C(x) and the CLT, LDT approximation for x1 ∼ Ber(0.1) (b):
Semi-log scale of plot a

Note: This behaviour of LDT approximation unifying with the asymptotic approximation for the
erf is not by chance, and we shall give a proof that this is always the case at the end of this exercise.

Let us now look at the plot of C(x) in Figure 1 (a), first we see that as expected, around the mean
value µ = p, LDT and the asymptotic approximation of CLT are almost unified.
Second notice that erf gives a much better result then both asymptotic result, but a closer look

would suggests this is only up to a factor of
1

2
.

5)In this section we would like show that for x1 ∼ N(µ, σ2) the results for sections 1-4 are trivial.
We shall skip all technical calculation and focus on the results.

Following the discussion of the CLT in section one, which its conclusion was eq 2, the CLT states
that for large enough n:

x̂ ∼ N(µ,
σ2

n
)

and the approximations we get are:

(i) Exact: F̄ (x) ≈ 1

2
− 1

2
erf

(
x− µ√

2 σ√
n

)
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Figure 2: (a): Normal plot of C(x) and the CLT, LDT approximation for x1 ∼ Ber(0.5) (b):
Semi-log scale of plot a

and its asymptotic approximation which again is presented with the Folded CDF:

(ii) Elementary function: C(x) ∼ exp

(
−(x− p)2

2σ2

n

)
, where SCLT (x) =

n

2σ2
(x− µ)2

Now following the same steps of section 2 of calculating the legandre transform of z(λ) we obtain:

SLDT (x) =
n

2σ2
(x− µ)2

and so the approximation we get from LTD is:

C(x) ∼ exp

(
−(x− p)2

2σ2

n

)

Last in order to calculate the exact expression for F̄ (x) we will use the following rule:

Let X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y) then X + Y ∼ N(µx + µy, σ

2
x + σ2y)

There are a few proofs for this proposition, the cleanest one I founnd is with Fourier transform, but
they are all completely technical and we will not go over them.
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By the above claim and eq 1 it is straight forward that the exact expression is:

F̄ (x) =
1

2
− 1

2
erf

(
x− µ√

2 σ√
n

)
To summarise we compare the four results above, showing that in the case where xj are normally
distributed, the CLT is exact and the asymptotic approximation for erf unified exactly with the
LDT.

6)So far we have treated two cases, for the first we chose a simple distribution - Bernouli, for the
seconed we chose a trivial one - Normal, and now we would like to give one last example, for expo-
nential distribution.

Assume xj ∼ Exp(α), by following the same steps as before the approximations we obtain from
CLT are:

(i) Exact: F̄ (x) ≈ 1

2
− 1

2
erf

(
x− 1

α√
2 1
α
√
n

)

(ii) Elementary function: C(x) ∼ exp

(
−

(x− 1
α)2

2 1
α2n

)
, where SCLT (x) =

n

2 1
α2

(x− 1

α
)2

From LDT we obtain:

C(x) ∼ exp (−n(αx− 1− log(αx))) and so SLDT (x) = n(αx− 1− log(αx))

The exact expression for F̄ (x) requires some calculation, but the result is that x̂ ∼ Gamma(n, αn)
and thus:

F̄ (x) = 1− γ(n, nαx)

(n− 1)!
= 1− 1

(n− 1)!

∫ nαx

0
tn−1e−tdt

Note: In the literature γ(s, x) is called lower incomplete gamma function.

The fact that we were able to get an approximation from LDT is not obvious, notice that Cremar’s
theorem requires:

Z(λ) := 〈eλx1〉 <∞ ∀λ ∈ R

yet for the case x1 ∼ Exp(α) we have:

Z(λ) =

{
α

α−λ λ < α

∞ λ ≥ α

Nevertheless, we are interested only in λ̄(x) such that:

I(x) := sup
λ∈R

[xλ− log(Z(λ))] = xλ̄(x)− log(Z(λ̄(x)))

carrying out the calculation we find:

λ̄(x) = α− 1

x
< α ∀x > 0

and indeed we shall see the LDT approximation works in this case.

As before, let us begin by analyze the behaviour at the edges:
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(i) lim
x→∞

SCLT (x)

SLDT (x)
= lim

x→∞

α2

2 (x− 1
α)2

(αx− 1)− log(αx)
=∞

(ii) lim
x→0

SCLT (x)

SLDT (x)
= lim

x→0

α2

2 (x− 1
α)2

(αx− 1)− log(αx)
= 0+

thus for large x CLT is above LDT and for small x the opposite. This is interesting since it was not
the case for the Bernouli distribution, where for both small and large x CLT was above LDT.

For the graphical analysis we look at the semi-log scale plot of the three approximation as in Figure
3 (b), and as before we can see that the LDT gives a much better approximation at the edges.

Figure 3: (a): Plot of C(x) and the CLT, LDT approximation for x1 ∼ Exp(1), (b): Semi-log scale
of plot a

We now continue with examine the behaviour around the expected value µ =
1

α
. Expending

SLDT (x) in Taylor series up to the second order we find:

SLDT (x) ≈ nα2

2
(x− 1

α
)2 = SCLT (x)

as expected from previous sections. And indeed looking at the plot in Figure 3 (a), we see that

LDT and the asymptotic approximation for CLT behave similarly around x =
1

α
.
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7) In this section we shall show that for a general i.i.d random variables xj , the asymptotic ap-
proximation for CLT and the LDT are equal up to the second order in the neighborhood of µ = 〈x1〉.

Keeping the notation as before the asymptotic approximation for CLT always gives:

SCLT (x) =
n

2σ2
(x− µ)2

We now want to expand I(x) as defined in Cremar’s theorem in Taylor series up to the second
oreder. We remind that by definition:

I(x) := sup
λ∈R

[xλ− log(Z(λ))]

which is exactly the Legandre transform of log(Z(λ)), thus we know λ is given by solving the
equation:

x =
1

Z(λ)

dZ

dλ
(4)

In order to solve this equation we shall calculate the Taylor expansion of Z(λ):

Z(λ) := 〈eλx1〉 = 〈
∞∑
k=0

(λx1)
k

k!
〉 =

∞∑
k=0

λk

k!
〈xk〉

and a more illuminating way to right it, is:

Z(λ) = 1 + µλ+ (µ2 + σ2)
λ2

2
+ ...

and the information we will need from this calculation is:

Z(0) = 1, Z ′(0) = µ, Z ′′(0) = µ2 + σ2 (5)

Let us note λ̄(x) such that:

I(x) = xλ̄(x)− log(Z(λ̄(x)))

then in order to find the Taylor expansion of I(x) around x = µ we have to solve the following 3
equation:

(i) I(µ) = µλ̄(µ)− log(Z(λ̄(µ)))

(ii) I ′(µ) = λ̄(µ)

(iii) I ′′(µ) =
dλ̄

dx
(µ)

where we have used eq 4 to calculate I ′(x).
Again looking at eq 4, and inserting the values for λ = 0 from eq 5 we find that:

x(λ = 0) =
1

Z(0)
Z ′(0) = µ

so we conclude:

λ̄(µ) = 0

which gives us the solutions for (i) and (ii):
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(i) I(µ) = 0

(ii) I ′(µ) = 0

For (iii) we will have to work little harder, once again we look at eq 4 which we know is true for λ̄
and differentiate both side with respect to x:

1 = − 1

(Z(λ̄))2

(
dZ

dλ̄

)2

+
1

Z(λ̄)

d2z

dλ̄2
dλ̄

dx

inserting x = µ and the values from eq 5 we get the third solution:

(iii) I ′′(µ) =
dλ̄

dx
(µ) =

1

σ2

At last we can right the Taylor series up to the second order for I(x):

I(x) ≈ 1

2σ2
(x− µ)2

and so:

SLDT (x) = nI(x) ≈ n

2σ2
(x− µ)2 = SCLT (x)

as we claimed.

Summery: To summarise, we haven’t prove so rigorously but the above discussion suggest that
for |x| >> µ the LDT approximation is better then both exact CLT approximation (erf ) and
its asymptotic approximation (Gaussain), while for x ≈ µ it is still better then the asymptotic
approximation for CLT but falls in compare to the erf.
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