(9637) Fermi-sea energy including Coulomb interaction
(1) Write the Hamiltonian \(H_0 \) of free electron in 3D box of volume \( L^3 \)
using field operators \( a_{k,s} \) and \( a_{k,s}^{\dagger} \) that destroy and create
electrons in momentum orbitals.
(2) Assuming two body interaction \( u(r) \), write the interaction term \(H_{int} \)
using the same field operators. In particular specify the result
for Coulumb interaction \( u(r) = e^2/r \).
Calculate the energy \( E = \langle (H_0+H_{int}) \rangle \) of an unperturbed Fermi sea,
given the Fermi momentum \( k_F \).
Based on [C08.1]