(8212) Correlator for free particle
Consider a particle of mass \( m \), that is free to move in 1D.
To be specific assume propagation during the time interval \( 0 < t < t_f \) from \( x=0 \) to \( x=x_f \).
Define:
\( Z = \langle x_f | U(t_f) |0 \rangle \)
\( \langle\langle x(t_1) \rangle\rangle = \langle x_f | U(t_f-t_1) \hat{x} U(t_1) |0 \rangle \)
\( \langle\langle x(t_2) x(t_1) \rangle\rangle = \langle x_f | U(t_f-t_2) \hat{x} U(t_2-t_1) \hat{x} U(t_1) |0 \rangle \)
\( \overline{x(t_1)} \equiv \langle\langle x(t_1) \rangle\rangle / Z \)
\( \overline{x(t_2) x(t_1)} \equiv \langle\langle x(t_2) x(t_1) \rangle\rangle / Z \)
\( \hat{x}(t) \equiv U^{-1} \hat{x} U \)
\( \langle \hat{x}(t_2) \hat{x}(t_1) \rangle \equiv \langle 0 | \hat{x}(t_2) \hat{x}(t_1) | 0 \rangle \)
(1) Given that the particle experiences a field of force \( F(t) \) find its propagator \( Z[F] \). In the subsequent items assume that \( F(t)=0 \).
(2) Using generating function formalism calculate \( \overline{x(t_1)} \).
(3) Using generating function formalism calculate \( \overline{x(t_2) x(t_1)} \).
(4) Repeat the calculation of \( \overline{x(t_1)} \) using an elementary approach.
Explain how formally you can deduce from this calculation a diverging result for
\( \langle x_f | \hat{x}(t_1) |0 \rangle \).
(5) Relate the symmetrized version of the correlator
\( \langle \hat{x}(t_2) \hat{x}(t_1) \rangle \)
to the spreading \( \langle (\hat{x}(t_2) - \hat{x}(t_1))^2 \rangle \).
Explain how a finite result can be obtained
by appropriate normalization and regularization of the "0" state.
Tip: The last item allows a shortcut via the Heisenberg formalism.
Note: The Gell-Mann-Low theorem regarding the calculation of correlators is discussed in Section [27] of the lecture notes.