E786: Calculation of the cross section for the Yukawa potential

Submitted by: Brigit Ben Ami

The problem:

Find the differential cross section and the total cross section by the Born approximation for Yukawa potential : $U(r)=U_{0} \frac{e^{-\left(\frac{r}{a}\right)}}{r}$. Define the conditions for the use of the Born approximation.

The solution:

From the Fermi golden rule we have the formula for the differential cross section called the Born approximation
$\sigma(\Omega)=\frac{1}{2 \pi^{2}}\left(\frac{k_{E}}{v_{E}}\right)^{2}\left|\tilde{U}\left(\overrightarrow{k_{\Omega}}-\overrightarrow{k_{0}}\right)\right|^{2}$
In order to use the Born formula we define the system coordinates:
The incident wave propagates in the z direction. The scattering direction is $\Omega=(\theta, \varphi)$. We also define $\vec{q}=\overrightarrow{k_{\Omega}}-\overrightarrow{k_{0}} \quad$ as the difference between the k_{Ω} of the scattered wave and the k_{0} of the incident wave. $k_{E}=\left|\overrightarrow{k_{\Omega}}\right|=\left|\overrightarrow{k_{0}}\right| \quad$ (ellastic scattering).

The approximation is that the scattering potential can be treated as a perturbation, allowing us to use the Fermi golden rule, from which we get the formula above.
$\tilde{U}(\vec{q})$ is the Fourier transform of the scattering potential $\mathrm{U}(\mathrm{r})$:
$\tilde{U}(\vec{q})=\iiint U(r) e^{-i \vec{q} \vec{r}} d^{3} r=U_{0} \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \int_{0}^{\infty} d r \cdot r^{2} \sin \theta e^{-i \vec{q} \vec{r} \cos \theta} \frac{e^{-\frac{r}{a}}}{r}$
The given potential is spherically symmetric, so we can rotate coordinate system for the calculation of this integral. We choose \vec{q} in the z direction, which means $\theta=0$.
$\tilde{U}(\vec{q})=2 \pi U_{0} \int_{0}^{\infty} d r \cdot r \cdot e^{-\frac{r}{a}} \int_{-1}^{1} d[\cos \theta] e^{-i q r \cos \theta}=$
$\left.2 \pi U_{0} \int_{0}^{\infty} d r \cdot r \cdot e^{-\frac{r}{a} \frac{e^{-i q r \cos \theta}}{-i q r}}\right|_{-1} ^{1}=2 \pi U_{0} \int_{0}^{\infty} d r \cdot e^{-\frac{r}{a} \frac{e^{-i q r}-e^{i q r}}{-i q}}=$
$\frac{2 \pi U_{0}}{i q} \int_{0}^{\infty} d r\left[e^{\left(i q-\frac{1}{a}\right) r}-e^{\left(-i q-\frac{1}{a}\right) r}\right]=\left.\frac{2 \pi U_{0}}{i q}\left[\frac{e^{\left(i q-\frac{1}{a}\right) r}}{i q-\frac{1}{a}}-\frac{e^{\left(-i q-\frac{1}{a}\right) r}}{-i q-\frac{1}{a}}\right]\right|_{0} ^{\infty}=$
$\frac{2 \pi U_{0}}{i q}\left[\frac{-1}{i q-\frac{1}{a}}+\frac{-1}{i q+\frac{1}{a}}\right]=\frac{2 \pi U_{0}}{i q} \frac{2 i q}{q^{2}+\frac{1}{a^{2}}}=$
$\frac{4 \pi U_{0}}{q^{2}+\frac{1}{a^{2}}}$
$\frac{k_{E}}{v_{E}}=m$ (non-relativistic dispersion relation) so we get:
$\sigma(\Omega)=\frac{m^{2}}{4 \pi^{2}}|\tilde{U}(q)|^{2}=\frac{4 m^{2} U_{0}^{2}}{\left(q^{2}+\frac{1}{a^{2}}\right)^{2}}$
now we choose θ to be the angle between $\overrightarrow{k_{0}}$ and $\overrightarrow{k_{\Omega}}$.
since $k_{E}=\left|\overrightarrow{k_{\Omega}}\right|=\left|\overrightarrow{k_{0}}\right|$ we have $q=2 k_{E} \sin \left(\frac{\theta}{2}\right)$
now $\sigma(\Omega)=\frac{4 m^{2} U_{0}^{2}}{\left(\frac{1}{a^{2}}+4 k_{E}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\right)^{2}}$
By taking the limit $a \rightarrow \infty$ the cross section of the Yukawa potential approaches the Rutherford scattering cross section:
$\sigma(\Omega)[a \rightarrow \infty]=\frac{4 m^{2} U_{0}^{2}}{\left(4 k_{E}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)\right)^{2}}$

Now, let's calculate the total cross section for the Yukawa potential:
$\sigma_{\text {total }}=\iint \sigma(\Omega) d \Omega=$
$\sigma_{\text {total }}=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin \theta d \theta \cdot \sigma(\theta)=2 \pi \int_{0}^{\pi} \sigma(\theta) \sin \theta d \theta$

It will be easier to use the expression for q :
$q=2 k_{E} \sin \left(\frac{\theta}{2}\right) \Rightarrow d q=k_{E} \cos \left(\frac{\theta}{2}\right) d \theta \cdot \frac{q}{q}=\frac{k_{E}^{2}}{q} \sin \theta d \theta \quad \Rightarrow \sin \theta d \theta=\frac{q \cdot d q}{k_{E}^{2}}$
$\sigma_{\text {total }}=\frac{4 m^{2} U_{0}^{2}}{k_{E}^{2}} 2 \pi \int_{0}^{2 k_{E}} d q \cdot q \frac{1}{\left(q^{2}+\frac{1}{a^{2}}\right)^{2}}$
$z=q^{2} \quad d z=2 q \cdot d q$
$\Rightarrow \sigma_{\text {total }}=\frac{4 m^{2} U_{0}^{2} \pi}{k_{E}^{2}} \int_{0}^{4 k_{E}^{2}} \frac{d z}{\left(\frac{1}{a^{2}}+z\right)^{2}}=\left.\frac{4 m^{2} U_{0}^{2} \pi}{k_{E}^{2}} \frac{-1}{\frac{1}{a^{2}}+z}\right|_{0} ^{4 k_{E}^{2}}=$
$\frac{4 m^{2} U_{0}^{2} \pi}{k_{E}^{2}}\left(a^{2}-\frac{a^{2}}{1+4 a^{2} k_{E}^{2}}\right)=4 m^{2} U_{0}^{2} \pi \frac{4 a^{4}}{1+4 a^{2} k_{E}^{2}}$
$\Rightarrow \sigma_{\text {total }}=\frac{16 a^{4} m^{2} U_{0}^{2} \pi}{1+4 a^{2} k_{E}^{2}}$

