
E786: Calculation of the cross section for the Yukawa potential

Submitted by: Brigit Ben Ami

The problem:

Find the differential cross section and the total cross section by the Born approximation for Yukawa
potential : U(r) = U0

e−( r
a )

r . Define the conditions for the use of the Born approximation.

The solution:

From the Fermi golden rule we have the formula for the differential cross section called the Born
approximation
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In order to use the Born formula we define the system coordinates:
The incident wave propagates in the z direction. The scattering direction is Ω = (θ, ϕ). We also
define ~q = ~kΩ− ~k0 as the difference between the kΩ of the scattered wave and the k0 of the incident
wave.
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∣∣∣ (ellastic scattering).

The approximation is that the scattering potential can be treated as a perturbation, allowing us to
use the Fermi golden rule, from which we get the formula above.

Ũ(~q) is the Fourier transform of the scattering potential U(r):
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The given potential is spherically symmetric, so we can rotate coordinate system for the calculation
of this integral. We choose ~q in the z direction, which means θ = 0.
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= m (non-relativistic dispersion relation) so we get:
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now we choose θ to be the angle between ~k0 and ~kΩ.
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By taking the limit a → ∞ the cross section of the Yukawa potential approaches the Rutherford
scattering cross section:
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Now, let’s calculate the total cross section for the Yukawa potential:

σtotal =
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It will be easier to use the expression for q :
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